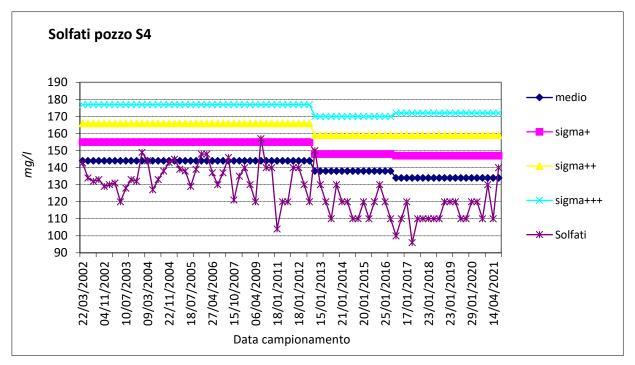


RELAZIONE TECNICA ANNUALE SULLO STATO D'AVANZAMENTO DELLE ATTIVITA' SVOLTE PRESSO LA DISCARICA

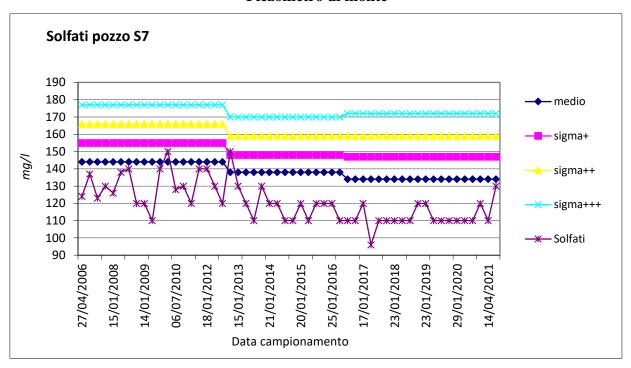
1.a) Analisi delle acque sotterranee effettuate con cadenza minima annuale, prelevate da tutti i pozzi di monitoraggio delle stesse a servizio della discarica, con le modalità stabilite nel Piano di Sorveglianza e Controllo, approvato con atto della Città Metropolitana di Torino N. 6266 del 31/12/2020.

Le analisi delle acque sotterranee effettuate con cadenza annuale (periodo di massima escursione di falda) sono state trasmesse alla Città Metropolitana di Torino con nota protocollo n. 48-2022U/DIR/PL/sb del 27/01/2022 (Relazione Quadrimestrale Gennaio 2022).

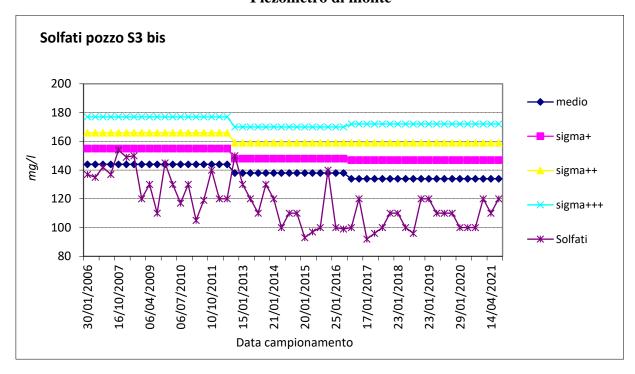

2) Relazione tecnica riassuntiva dei dati relativi al monitoraggio ambientale dell'impianto, espressi anche sotto forma di tabulazioni ed elaborazioni grafiche.

> "MONITORAGGIO DELLE ACQUE SOTTERRANEE"

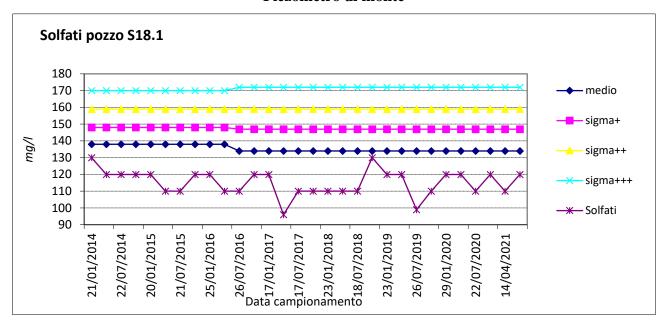
Con cadenza trimestrale vengono effettuate le analisi chimiche delle acque sotterranee secondo le modalità descritte nel Piano di Sorveglianza e Controllo redatto da Barricalla ed approvato dalla Città Metropolitana di Torino con atto n. 6266 del 31/12/2020 (Autorizzazione Integrata Ambientale ai sensi del D.Lgs. 152/2006 e s.m.i.).


Si riportano di seguito alcuni grafici riassuntivi delle verifiche effettuate con il metodo delle x-chart, relativamente alle campagne di monitoraggio effettuate sino a ottobre 2021, in particolare per il parametro dei solfati:

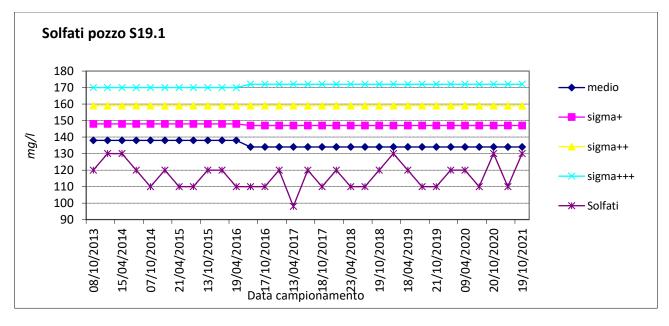
Piezometro di monte



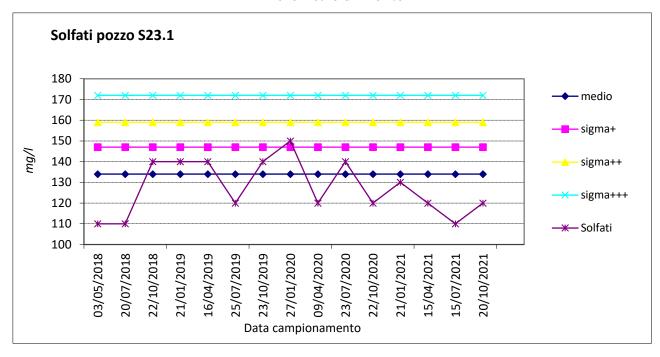
Piezometro di monte



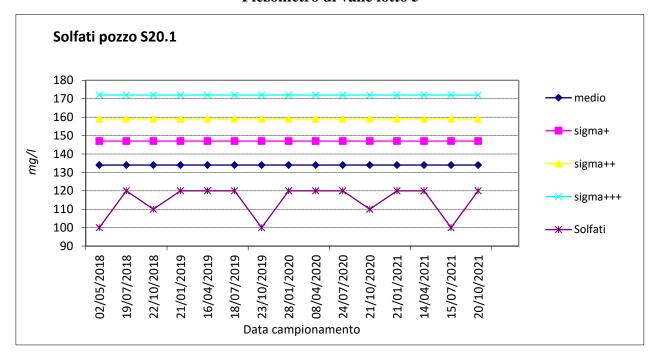
Piezometro di monte



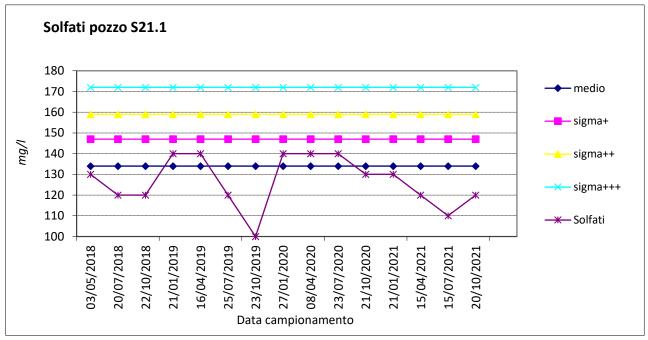
Piezometro di monte



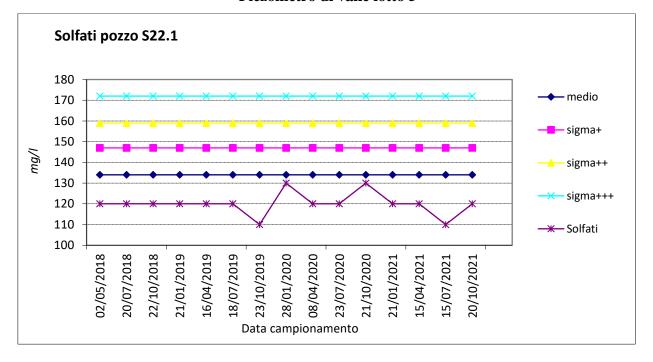
Piezometro di monte



Piezometro di monte



Piezometro di valle lotto 5



Piezometro di valle lotto 5

Piezometro di valle lotto 5

Dai grafici precedenti si può evincere come i valori analitici riscontrati nei piezometri S4, S3bis, S7, S18.1, S19.1 ed S23.1 (di monte, rispetto alla direzione di deflusso della falda idrica), S20.1, S21.1, ed S22.1 (valle lotto 5) siano inferiori al valore di 3σ (calcolato sull'S4), utilizzato come soglia di allarme nel sistema di monitoraggio. Inoltre se si considera che il limite per il parametro "Solfati" nelle acque sotterranee secondo il D.Lgs. 3 aprile 2006 n.152 e s.m.i. è pari a 250 mg/l, si può facilmente verificare che la soglia di allarme è notevolmente inferiore a tale limite, così come i valori analitici riscontrati dai monitoraggi.

Anche per i campioni prelevati dai restanti piezometri, non presi in esame in questa relazione, si sono avuti gli stessi riscontri analitici.

"MONITORAGGIO DELLE ACQUE SUPERFICIALI"

Con cadenza trimestrale vengono effettuate le analisi chimiche delle acque di drenaggio di piattaforma secondo le modalità descritte nel Piano di sorveglianza e controllo approvato con atto della Città Metropolitana di Torino n. 6266 del 31/12/2020 (Autorizzazione Integrata Ambientale ai sensi del D.Lgs. 152/2006 e s.m.i.).

Si riportano di seguito le tabelle con i risultati analitici ottenuti nelle campagne di monitoraggio eseguite da Gennaio sino a Dicembre 2021, messi a confronto con i limiti di accettabilità per lo scarico in fognatura o in acque superficiali definiti dalla tabella 3 dell'Allegato 5 alla parte Terza del D.Lgs. 3 Aprile 2006 n. 152 e s.m.i.:

Campagna di Gennaio 2021

Campagna ui Ge			Tabella 3 D.Lgs. 152/06	Tabella 3 D.Lgs. 152/06	
Parametro	Metodo di rif.	Risultato	Scarico in acque superficiali	Scarico in rete fognaria	
		[mg/l]	[mg/l]	[mg/l]	
PH	UNI ISO 10523 2012	8,3	5,5-9,5	5,5-9,5	
C.O.D.	ISO 15705 2002 (E)	11 mg O2/1	≤160 mg/l	≤500 mg/l	
Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003	36 mg/l	≤80 mg/l	≤200 mg/l	
Materiali sedimentabili	APAT CNR IRSA 2090/C Man 29 2003	2 ml/l			
Cloruri	UNI EN ISO 10304-1 2009	220 mg/l	≤1200 mg/l	≤1200 mg/l	
Solfati	UNI EN ISO 10304-1 2009	72 mg/l	≤1000 mg/l	≤1000 mg/l	
Azoto nitrico (come N)	UNI EN ISO 10304-1 2009	1,4 mg/l	≤20 mg/l	≤30 mg/l	
Azoto nitroso (come N)	APAT CNR IRSA 4050 Man 29 2003	0,023 mg/l	≤0,6 mg/l	≤0,6 mg/l	
Azoto ammoniacale (come	APAT CNR IRSA 4030 A2/C	<0,5 mg/l	≤15 mg/l	≤30 mg/l	
NH4)	Man 29 2003				
Tensioattivi anionici	APAT CNR IRSA 5170 Man 29	<0,1 mg/l	≤2 mg/l	≤4 mg/l	
(M.B.A.S.)	2003				
Idrocarburi totali	APAT CNR IRSA 5160 B2 Man 29 2003	<0,05 mg/l	≤5 mg/l	≤10 mg/l	
Solventi Organici					
Aromatici					
Totali	UNI EN ISO 15680:2005	0,040 mg/l	≤0,2 mg/l	≤0,4 mg/l	
Benzene	UNI EN ISO 15680:2005	<0,010 mg/l			
Toluene	UNI EN ISO 15680:2005	<0,010 mg/l			
Etilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l			
o-Xilene	UNI EN ISO 15680:2005	<0,010 mg/l			
Isopropilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l			
n-propilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l			
Stirene	UNI EN ISO 15680:2005	<0,010 mg/l			
m e p-xilene	UNI EN ISO 15680:2005	<0,010 mg/l			
Metalli					

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
Arsenico	UNI EN ISO 17294-2:2005	0,001 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,016 mg/l	≤0,02 mg/l	≤0,02 mg/l
Cromo (VI)	APAT CNR IRSA 3150 C Man 29 2003	<0,020 mg/l	≤0,2 mg/l	≤0,2 mg/l
Ferro	UNI EN ISO 17294-2:2005	0,094 mg/l	≤2 mg/l	≤4 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,018 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,014 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0019 mg/l	≤0,03 mg/l	≤0,03 mg/l
Zinco	UNI EN ISO 17294-2:2005	0,054 mg/l	≤0,5 mg/l	≤1 mg/l

Campagna di Aprile 2021

		D: 1/	Tabella 3 D.Lgs. 152/06	Tabella 3 D.Lgs. 152/06
Parametro	Metodo di rif.	Risultato	Scarico in acque superficiali	Scarico in rete fognaria
		[mg/l]	[mg/l]	[mg/l]
PH	UNI ISO 10523 2012	7,7	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	46 mg O2/l	≤160 mg/l	≤500 mg/l
Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29	52 mg/l	≤80 mg/l	≤200 mg/l
	2003			
Materiali sedimentabili	APAT CNR IRSA 2090/C Man 29 2003	1 ml/l		
Cloruri	UNI EN ISO 10304-1 2009	58 mg/l	≤1200 mg/l	≤1200 mg/l
Solfati	UNI EN ISO 10304-1 2009	49 mg/l	≤1000 mg/l	≤1000 mg/l
Azoto nitrico (come N)	UNI EN ISO 10304-1 2009	1,1 mg/l	≤20 mg/l	≤30 mg/l
Azoto nitroso (come N)	APAT CNR IRSA 4050 Man 29 2003	<0,01 mg/l	≤0,6 mg/l	≤0,6 mg/l
Azoto ammoniacale (come	APAT CNR IRSA 4030 A2/C	<0,5 mg/l	≤15 mg/l	≤30 mg/l
NH4)	Man 29 2003			
Tensioattivi anionici	APAT CNR IRSA 5170 Man 29	018 mg/l	≤2 mg/l	≤4 mg/l
(M.B.A.S.)	2003			
Idrocarburi totali	APAT CNR IRSA 5160 B2 Man	<0,05 mg/l	≤5 mg/l	≤10 mg/l
	29 2003			
Solventi Organici				
Aromatici				
Totali	UNI EN ISO 15680:2005	0,040 mg/l	≤0,2 mg/l	≤0,4 mg/l
Benzene	UNI EN ISO 15680:2005	<0,010 mg/1		
Toluene	UNI EN ISO 15680:2005	<0,010 mg/l		
Etilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l		
o-Xilene	UNI EN ISO 15680:2005	<0,010 mg/l		
Isopropilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l		
n-propilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l		
Stirene	UNI EN ISO 15680:2005	<0,010 mg/l		
m e p-xilene	UNI EN ISO 15680:2005	<0,010 mg/l		

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	0,001 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,0094 mg/l	≤0,02 mg/l	≤0,02 mg/l
Cromo (VI)	APAT CNR IRSA 3150 C Man 29 2003	<0,020 mg/l	≤0,2 mg/l	≤0,2 mg/l
Ferro	UNI EN ISO 17294-2:2005	0,14 mg/l	≤2 mg/l	≤4 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,036 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,018 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0018 mg/l	≤0,03 mg/l	≤0,03 mg/l
Zinco	UNI EN ISO 17294-2:2005	0,063 mg/l	≤0,5 mg/l	≤1 mg/l

Campagna di Luglio 2021

Campagna di Lu		Risultato	Tabella 3 D.Lgs. 152/06	Tabella 3 D.Lgs. 152/06
Parametro	Metodo di rif.	[mg/l]	Scarico in acque superficiali	Scarico in rete fognaria
		[IIIg/I]	[mg/l]	[mg/l]
PH	UNI ISO 10523 2012	7,32	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	59 mg O2/l	≤160 mg/l	≤500 mg/l
Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003	65 mg/l	≤80 mg/l	≤200 mg/l
Materiali sedimentabili	APAT CNR IRSA 2090/C Man 29 2003	2 ml/1		
Cloruri	UNI EN ISO 10304-1 2009	26 mg/l	≤1200 mg/l	≤1200 mg/l
Solfati	UNI EN ISO 10304-1 2009	33 mg/l	≤1000 mg/l	≤1000 mg/l
Azoto nitrico (come N)	UNI EN ISO 10304-1 2009	1,6 mg/l	≤20 mg/l	≤30 mg/l
Azoto nitroso (come N)	APAT CNR IRSA 4050 Man 29 2003	0,047 mg/l	≤0,6 mg/l	≤0,6 mg/l
Azoto ammoniacale (come NH4)	APAT CNR IRSA 4030 A2/C Man 29 2003	<0,5 mg/l	≤15 mg/l	≤30 mg/l
Tensioattivi anionici (M.B.A.S.)	APAT CNR IRSA 5170 Man 29 2003	0,15 mg/l	≤2 mg/l	≤4 mg/l
Idrocarburi totali	APAT CNR IRSA 5160 B2 Man 29 2003	<0,05 mg/l	≤5 mg/l	≤10 mg/l
Solventi Organici				
Aromatici				
Totali	UNI EN ISO 15680:2005	0,040 mg/l	≤0,2 mg/l	≤0,4 mg/l
Benzene	UNI EN ISO 15680:2005	<0,010 mg/l		
Toluene	UNI EN ISO 15680:2005	<0,010 mg/l		
Etilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l		
o-Xilene	UNI EN ISO 15680:2005	<0,010 mg/l		
Isopropilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l		
n-propilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l		
Stirene	UNI EN ISO 15680:2005	<0,010 mg/l		

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
m e p-xilene	UNI EN ISO 15680:2005	<0,010 mg/l		
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	0,0026 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,018 mg/l	≤0,02 mg/l	≤0,02 mg/l
Cromo (VI)	APAT CNR IRSA 3150 C Man 29 2003	<0,020 mg/l	≤0,2 mg/l	≤0,2 mg/l
Ferro	UNI EN ISO 17294-2:2005	0,096 mg/l	≤2 mg/l	≤4 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,044 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,072 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0034 mg/l	≤0,03 mg/l	≤0,03 mg/l
Zinco	UNI EN ISO 17294-2:2005	0,23 mg/l	≤0,5 mg/l	≤1 mg/l

Campagna di Ottobre 2021

Campagna ui Ott		Risultato	Tabella 3 D.Lgs. 152/06	Tabella 3 D.Lgs. 152/06
Parametro	Metodo di rif.		Scarico in acque superficiali	Scarico in rete fognaria
		[mg/l]	[mg/l]	[mg/l]
PH	UNI ISO 10523 2012	7,53	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	<5 mg O2/l	≤160 mg/l	≤500 mg/l
Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003	20 mg/l	≤80 mg/l	≤200 mg/l
Materiali sedimentabili	APAT CNR IRSA 2090/C Man 29 2003	2 ml/l		
Cloruri	UNI EN ISO 10304-1 2009	17 mg/l	≤1200 mg/l	≤1200 mg/l
Solfati	UNI EN ISO 10304-1 2009	33 mg/l	≤1000 mg/l	≤1000 mg/l
Azoto nitrico (come N)	UNI EN ISO 10304-1 2009	8 mg/l	≤20 mg/l	≤30 mg/l
Azoto nitroso (come N)	APAT CNR IRSA 4050 Man 29 2003	<0,01 mg/l	≤0,6 mg/l	≤0,6 mg/l
Azoto ammoniacale (come NH4)	APAT CNR IRSA 4030 A2/C Man 29 2003	<0,5 mg/l	≤15 mg/l	≤30 mg/l
Tensioattivi anionici (M.B.A.S.)	APAT CNR IRSA 5170 Man 29 2003	<0,1 mg/l	≤2 mg/l	≤4 mg/l
Idrocarburi totali	APAT CNR IRSA 5160 B2 Man 29 2003	<0,05 mg/l	≤5 mg/l	≤10 mg/l
Solventi Organici				
Aromatici				
Totali	UNI EN ISO 15680:2005	0,040 mg/l	≤0,2 mg/l	≤0,4 mg/l
Benzene	UNI EN ISO 15680:2005	<0,010 mg/l		
Toluene	UNI EN ISO 15680:2005	<0,010 mg/l		
Etilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l		
o-Xilene	UNI EN ISO 15680:2005	<0,010 mg/l		
Isopropilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l		
n-propilbenzene	UNI EN ISO 15680:2005	<0,010 mg/l		

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
Stirene	UNI EN ISO 15680:2005	<0,010 mg/l		
m e p-xilene	UNI EN ISO 15680:2005	<0,010 mg/l		
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	<0,001 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,00023 mg/l	≤0,02 mg/l	≤0,02 mg/l
Cromo (VI)	APAT CNR IRSA 3150 C Man 29 2003	<0,020 mg/l	≤0,2 mg/l	≤0,2 mg/l
Ferro	UNI EN ISO 17294-2:2005	<0,02 mg/l	≤2 mg/l	≤4 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,0049 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,084 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	<0,001 mg/l	≤0,03 mg/l	≤0,03 mg/l
Zinco	UNI EN ISO 17294-2:2005	0,34 mg/l	≤0,5 mg/l	≤1 mg/l

Con cadenza trimestrale vengono effettuate le analisi chimiche delle acque meteoriche di ruscellamento (acque di capping) secondo le modalità stabilite nel Piano di Sorveglianza e Controllo approvato dalla Città Metropolitana di Torino con determina n. 6266 del 31/12/2020. Si riportano di seguito le tabelle con i risultati analitici ottenuti nelle campagne di monitoraggio eseguite da Gennaio sino a Dicembre 2021, messi a confronto con i limiti di accettabilità per lo scarico in fognatura o in acque superficiali definiti dalla tabella 3 dell'Allegato 5 alla parte Terza del D.Lgs. 3 Aprile 2006 n. 152 e s.m.i.:

Campagna di gennaio 2021 Pcn 3

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	8,3	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	13 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003	37 mg/l	≤80 mg/l	≤200 mg/l
Cloruri	UNI EN ISO 10304-1 2009	220 mg/l	≤1200 mg/l	≤1200 mg/l
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	0,001 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,015 mg/l	≤0,02 mg/l	≤0,02 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,018 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,013 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0018 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di gennaio 2021 Pcn 4

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	8,2	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	<5 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003	37 mg/l	≤80 mg/l	≤200 mg/l
Cloruri Metalli	UNI EN ISO 10304-1 2009	220 mg/l	≤1200 mg/l	≤1200 mg/l
Arsenico	UNI EN ISO 17294-2:2005	0,001 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,016 mg/l	≤0,02 mg/l	≤0,02 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,019 mg/l	≤0,2 mg/l	≤0,3 mg/1
Rame	UNI EN ISO 17294-2:2005	0,014 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0018 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di aprile 2021 Pcn 1

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	7,4	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	40 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi	APAT CNR IRSA 2090 B Man 29	52 mg/l	≤80 mg/l	≤200 mg/l
totali	2003			
Cloruri	UNI EN ISO 10304-1 2009	56 mg/l	≤1200 mg/l	≤1200 mg/l
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	<0,001 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,0086 mg/l	≤0,02 mg/l	≤0,02 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,034 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,016 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0016 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di aprile 2021 Pcn 2

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	7,6	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	42 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi	APAT CNR IRSA 2090 B Man 29	55 mg/l	≤80 mg/l	≤200 mg/l
totali	2003			
Cloruri	UNI EN ISO 10304-1 2009	56 mg/l	≤1200 mg/l	≤1200 mg/l
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	<0,001 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,0093 mg/l	≤0,02 mg/l	≤0,02 mg/l

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
Piombo	UNI EN ISO 17294-2:2005	0,036 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,017 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0016 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di aprile 2021 Pcn 3

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	7,7	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	39 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003	56 mg/l	≤80 mg/l	≤200 mg/l
Cloruri Metalli	UNI EN ISO 10304-1 2009	56 mg/l	≤1200 mg/l	≤1200 mg/l
Arsenico	UNI EN ISO 17294-2:2005	0,001 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,0094 mg/l	≤0,02 mg/l	≤0,02 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,037 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,017 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0017 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di aprile 2021 Pcn 4

	•	Risultato	Tabella 3 D.Lgs. 152/06	Tabella 3 D.Lgs. 152/06
Parametro	Metodo di rif.	[mg/l]	Scarico in acque superficiali	Scarico in rete fognaria
		[IIIg/I]	[mg/l]	[mg/l]
PH	UNI ISO 10523 2012	7,7	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	46 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi	APAT CNR IRSA 2090 B Man 29	54 mg/l	≤80 mg/l	≤200 mg/l
totali	2003			
Cloruri	UNI EN ISO 10304-1 2009	57 mg/l	≤1200 mg/l	≤1200 mg/l
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	<0,001 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,0087 mg/l	≤0,02 mg/l	≤0,02 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,034 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,016 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0016 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di luglio 2021 Pcn 1

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	7,4	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	37 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003	48 mg/l	≤80 mg/l	≤200 mg/l
Cloruri Metalli	UNI EN ISO 10304-1 2009	20 mg/l	≤1200 mg/I	≤1200 mg/l
Arsenico	UNI EN ISO 17294-2:2005	0,002 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,0017 mg/l	≤0,02 mg/l	≤0,02 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,0023 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,018 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0021 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	0,0016 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di luglio 2021 Pcn 2

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	7,5	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	13 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi	APAT CNR IRSA 2090 B Man 29	49 mg/l	≤80 mg/l	≤200 mg/l
totali	2003			
Cloruri	UNI EN ISO 10304-1 2009	17 mg/l	≤1200 mg/l	≤1200 mg/l
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	0,0023 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,00068 mg/l	≤0,02 mg/l	≤0,02 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,0020mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,0085 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0047 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di luglio 2021 Pcn 3

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	8,2	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	19 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi	APAT CNR IRSA 2090 B Man 29	49 mg/l	≤80 mg/l	≤200 mg/l
totali	2003			
Cloruri	UNI EN ISO 10304-1 2009	56 mg/l	≤1200 mg/l	≤1200 mg/l
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	0,0016 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,016 mg/l	≤0,02 mg/l	≤0,02 mg/l

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
Piombo	UNI EN ISO 17294-2:2005	0,0050 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,015 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0029 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	0,0016 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di luglio 2021 Pcn 4

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	8,2	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	37 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003	48 mg/l	≤80 mg/l	≤200 mg/l
Cloruri Metalli	UNI EN ISO 10304-1 2009	4,9 mg/l	≤1200 mg/l	≤1200 mg/l
Arsenico	UNI EN ISO 17294-2:2005	0,0027 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,015 mg/l	≤0,02 mg/l	≤0,02 mg/l
Piombo	UNI EN ISO 17294-2:2005	0,0081 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,016 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0045 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di ottobre 2021 Pcn 1

		Risultato	Tabella 3 D.Lgs. 152/06	Tabella 3 D.Lgs. 152/06
Parametro	Metodo di rif.		Scarico in acque superficiali	Scarico in rete fognaria
		[mg/l]	[mg/l]	[mg/l]
PH	UNI ISO 10523 2012	8,2	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	13 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi	APAT CNR IRSA 2090 B Man 29	25 mg/l	≤80 mg/l	≤200 mg/l
totali	2003			
Cloruri	UNI EN ISO 10304-1 2009	9,9 mg/l	≤1200 mg/l	≤1200 mg/l
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	0,0011 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,0016 mg/l	≤0,02 mg/l	≤0,02 mg/l
Piombo	UNI EN ISO 17294-2:2005	<0,001 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,0037 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0025 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di ottobre 2021 Pcn 2

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	8,2	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	16 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003	22 mg/l	≤80 mg/l	≤200 mg/l
Cloruri Metalli	UNI EN ISO 10304-1 2009	15 mg/l	≤1200 mg/l	≤1200 mg/l
Arsenico	UNI EN ISO 17294-2:2005	0,0015 mg/l	≤0,5 mg/l	≤0,5 mg/1
Cadmio	UNI EN ISO 17294-2:2005	0,0012 mg/l	≤0,02 mg/l	≤0,02 mg/l
Piombo	UNI EN ISO 17294-2:2005	<0,001 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,0040 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0018 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di ottobre 2021 Pcn 3

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	8,8	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	22 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi	APAT CNR IRSA 2090 B Man 29	27 mg/l	≤80 mg/l	≤200 mg/l
totali	2003			
Cloruri	UNI EN ISO 10304-1 2009	42 mg/l	≤1200 mg/l	≤1200 mg/l
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	<0,001 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,0011 mg/l	≤0,02 mg/l	≤0,02 mg/l
Piombo	UNI EN ISO 17294-2:2005	<0,0010 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,015 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	0,0015 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Campagna di ottobre 2021 Pcn 4

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
PH	UNI ISO 10523 2012	7,85	5,5-9,5	5,5-9,5
C.O.D.	ISO 15705 2002 (E)	37 mg/l	≤160 mg/l	≤500 mg/l
Solidi sospesi	APAT CNR IRSA 2090 B Man 29	57 mg/l	≤80 mg/l	≤200 mg/l
totali	2003			
Cloruri	UNI EN ISO 10304-1 2009	8,1 mg/l	≤1200 mg/l	≤1200 mg/l
Metalli				
Arsenico	UNI EN ISO 17294-2:2005	<0,001 mg/l	≤0,5 mg/l	≤0,5 mg/l
Cadmio	UNI EN ISO 17294-2:2005	0,0022 mg/l	≤0,02 mg/l	≤0,02 mg/l

Parametro	Metodo di rif.	Risultato [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in acque superficiali [mg/l]	Tabella 3 D.Lgs. 152/06 Scarico in rete fognaria [mg/l]
Piombo	UNI EN ISO 17294-2:2005	0,0041 mg/l	≤0,2 mg/l	≤0,3 mg/l
Rame	UNI EN ISO 17294-2:2005	0,0021 mg/l	≤0,1 mg/l	≤0,4 mg/l
Selenio	UNI EN ISO 17294-2:2005	<0,001 mg/l	≤0,03 mg/l	≤0,03 mg/l
Mercurio	UNI EN ISO 17294-2:2005	<0,0005 mg/l	≤0,005 mg/l	≤0,005 mg/l

Come si può notare i valori delle determinazioni analitiche riscontrati sono sempre inferiori ai limiti stabiliti dalla tabella 3 dell'Allegato 5 alla parte Terza del D.Lgs. 3 Aprile 2006 n. 152 e s.m.i.

"MONITORAGGIO DEL GAS DI DISCARICA"

Con cadenza semestrale vengono effettuate le analisi chimiche del gas prelevato dagli sfiati di biogas presenti nel lotto 5 secondo le modalità descritte nel Piano di Sorveglianza e Controllo approvato dalla Città Metropolitana di Torino con Autorizzazione Integrata Ambientale n. 6266 del 31/12/2020.

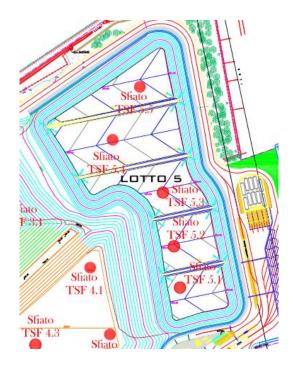
Di seguito si riportano le tabelle riassuntive delle analisi effettuate nelle campagne di Giugno 2021 e Dicembre 2021:

Lotto 5 campagna di Giugno 2021

	U.M.	TSF 5.1	TSF 5.2	TSF 5.3	TSF 5.4	TSF 5.5
Temperatura dei fumi	°C	38	39,5	38,5	38,5	38,0
Pressione atmosferica	mbar	987,8	987,8	987,8	987,8	987,8
Pressione gas rispetto all'esterno	mbar	< 1	< 1	< 1	< 1	< 1
INQUINANTI						
Ammoniaca	mg/Nm3	0,15	0,33	0,22	0,26	0,21
Acido solfidrico	mg/Nm3	0,35	0,35	0,82	0,64	0,35
Monossido di carbonio	mg/Nm3	0,75	2,8	2	3,9	6,25
Anidride carbonica	% v/v	0,11	0,12	0,11	0,10	0,11
Metano	mg/Nm3	223,5	572	346,8	535,3	1101
Metano (L.E.L.)	L.E.L.	0,63	1,6	0,97	1,50	3,08
SOV:						
Dicloro Difluoro Metano (freon 12)	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Clorometano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2-1,1,2,2-Tetrafluoroetano (freon 114)	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Cloruro di vinile	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Bromo metano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Cloro etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1-Dicloro Etilene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Diclorometano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06

	U.M.	TSF 5.1	TSF 5.2	TSF 5.3	TSF 5.4	TSF 5.5
Triclorofluorometano (freon 11)	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1,2-Tricloro-2,2,1-Trifluoro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1-Dicloro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
cis-1,2-Dicloro Etilene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Triclorometano (Cloroformio)	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2-Dicloro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1,1-Tricloro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Benzene	mg/Nm3	<0,06	0,13	<0,06	0,84	0,93
Tetracloro Metano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2-Dicloro Propano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Tricloro Etilene	mg/Nm3	1,35	0,39	0,98	0,97	1,52
1,3-cis-Dicloro Propene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,3-trans-Dicloro Propene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1,2-Tricloro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Toluene	mg/Nm3	1,24	1,44	0,74	1,13	1,71
1,2-Dibromo Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Tetracloro Etilene	mg/Nm3	0,85	1,23	0,80	1,95	1,12
Cloro Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Etil Benzene	mg/Nm3	0,09	0,86	0,91	0,91	1,55
meta Xilene + para Xilene	mg/Nm3	0,21	1,17	0,49	0,88	0,73
Stirene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1,2,2-Tetracloro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
orto Xilene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,3,5-Trimetil Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2,4-Trimetil Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,3-Dicloro Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,4-Dicloro Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2-Dicloro Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2,4-Tricloro Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Esacloro Butadiene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Metil Mercaptano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Etil Mercaptano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Dimetil Solfuro	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Carbonio Disolfuro	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
n-Propil Mercaptano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Tiofene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Dietil Solfuro	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
n-Butil Mercaptano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Tetraidro Tiofene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Diallil Solfuro	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06

	U.M.	TSF 5.1	TSF 5.2	TSF 5.3	TSF 5.4	TSF 5.5
Esametil disilossano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Cicloesano	mg/Nm3	0,68	8,12	0,38	2,36	4,38
Metilcicloesano	mg/Nm3	0,42	11,36	0,22	1,12	1,29


Lotto 5 campagna di Dicembre 2021

	U.M.	TSF 5.1	TSF 5.2	TSF 5.3	TSF 5.4	TSF 5.5
Temperatura dei fumi	°C	21,7	22,3	14,7	21,7	25,6
Pressione atmosferica	mbar	987,1	987,1	987,1	987,1	987,1
Pressione gas rispetto all'esterno	mbar	< 1	< 1	< 1	< 1	< 1
INQUINANTI						
Ammoniaca	mg/Nm3	0,12	0,12	0,17	0,26	0,11
Acido solfidrico	mg/Nm3	0,19	0,16	0,31	0,36	0,18
Monossido di carbonio	mg/Nm3	4	3,8	12,6	14,1	17
Anidride carbonica	% v/v	0,24	0,11	0,34	0,11	0,07
Metano	mg/Nm3	97,6	86	195,2	971,6	1271,4
Metano (L.E.L.)	L.E.L.	0,27	0,2	0,55	2,72	3,56
SOV:						
Dicloro Difluoro Metano (freon 12)	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Clorometano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2-1,1,2,2-Tetrafluoroetano (freon 114)	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Cloruro di vinile	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Bromo metano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Cloro etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1-Dicloro Etilene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Diclorometano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Triclorofluorometano (freon 11)	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1,2-Tricloro-2,2,1-Trifluoro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1-Dicloro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
cis-1,2-Dicloro Etilene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Triclorometano (Cloroformio)	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2-Dicloro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1,1-Tricloro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Benzene	mg/Nm3	<0,06	0,08	<0,06	0,68	0,83
Tetracloro Metano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2-Dicloro Propano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Tricloro Etilene	mg/Nm3	0,96	0,29	0,67	1,11	1,62
1,3-cis-Dicloro Propene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,3-trans-Dicloro Propene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1,2-Tricloro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06

	U.M.	TSF 5.1	TSF 5.2	TSF 5.3	TSF 5.4	TSF 5.5
Toluene	mg/Nm3	1,32	1,03	0,50	1,78	2,06
1,2-Dibromo Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Tetracloro Etilene	mg/Nm3	0,79	1,51	0,68	1,34	1,65
Cloro Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Etil Benzene	mg/Nm3	<0,06	0,74	0,78	1,26	1,74
meta Xilene + para Xilene	mg/Nm3	0,16	0,98	0,36	0,54	0,81
Stirene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,1,2,2-Tetracloro Etano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
orto Xilene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,3,5-Trimetil Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2,4-Trimetil Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,3-Dicloro Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,4-Dicloro Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2-Dicloro Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
1,2,4-Tricloro Benzene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Esacloro Butadiene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Metil Mercaptano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Etil Mercaptano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Dimetil Solfuro	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Carbonio Disolfuro	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
n-Propil Mercaptano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Tiofene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Dietil Solfuro	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
n-Butil Mercaptano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Tetraidro Tiofene	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Diallil Solfuro	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Esametil disilossano	mg/Nm3	<0,06	<0,06	<0,06	<0,06	<0,06
Cicloesano	mg/Nm3	0,51	6,86	0,19	1,54	3,65
Metilcicloesano	mg/Nm3	0,32	11,58	0,09	0,76	0,96

I valori ottenuti sono risultati al disotto dei valori di soglia IPPC (D.M. 23/11/2001 e s.m.i.).

"MONITORAGGIO DELLA QUALITA' DELL'ARIA"

Con cadenza mensile viene effettuato il monitoraggio della qualità dell'aria con le modalità indicate nel Piano di Sorveglianza e Controllo approvato dalla Città Metropolitana di Torino con atto n. 6266 del 31/12/2020.

Di seguito si riportano le tabelle relative alle 12 campagne effettuate sino a Dicembre 2020:

> Campagna di Gennaio 2021

COMPOSTI C.O.V.	u.m.	anemometro punto 1	Generatore punto 2	Piazzale punto 3	bianco punto 6
1,2-dicloro-etano	μg/m³	<0,2	<0,2	<0,2	<0,2
Benzene	μg/m³	3,5	2,6	3,3	1,8
1,2-dicloro-propano	μg/m³	<0,2	<0,2	<0,2	<0,2
Toluene	μg/m³	1,1	0,9	0,3	0,3
Etil benzene	μg/m³	0,2	0,3	0,4	0,2
meta Xilene + para Xilene	μg/m³	0,7	0,7	0,6	0,3
Stirene	μg/m³	<0,2	<0,2	<0,2	<0,2
orto Xilene	μg/m³	0,3	0,4	0,2	0,3
1,3,5-trimetil-benzene	μg/m³	0,3	0,4	0,6	0,2
1,2,4-trimetil-benzene	μg/m³	0,3	0,2	2,2	<0,2

COMPOSTI C.O.V.	u.m.	Piezometro S10 punto 7	Serbatoi di emergenza punto 8	Cabina Enel punto 9
1,2-dicloro-etano	µg/m³	< 0,2	0,2	0.2
Benzene	µg/m³	2,2	3,8	3,1
1,2-dicloro-propano	µg/m³	<0,2	<0,2	<0,2
Toluene	µg/m³	0,5	1,6	0,9
Etil benzene	µg/m³	0,4	0,3	0,2
meta Xilene + para Xilene	µg/m³	0,3	1,2	0,9
Stirene	µg/m³	<0,2	0,2	0,2
orto Xilene	µg/m³	0,2	0,3	0,2
1,3,5-trimetil-benzene	µg/m³	0,4	0,3	0,2
1,2,4-trimetil-benzene	µg/m³	0,2	0,4	0,5

COMPOSTI C.O.V.	u.m.	Lato tangenziale Nord punto 12	Lato est punto 13	Lato sud punto 14	discarica punto 15	discarica punto 16
1,2-dicloro-etano	μg/m³	<0,2	<0,2	<0,2	<0,2	<0,2
Benzene	μg/m³	2,4	2,2	1,3	3,5	1,8
1,2-dicloro-propano	μg/m³	<0,2	<0,2	<0,2	<0,2	<0,2
Toluene	μg/m³	0,7	0,5	0,7	1,2	0,4
Etil benzene	μg/m³	0,5	0,2	0,3	1,1	0,6
meta Xilene + para Xilene	μg/m³	0,6	0,4	0,8	0,8	1,3
Stirene	μg/m³	0,2	<0,2	0,3	0,2	0,3
orto Xilene	μg/m³	0,3	0,3	0,4	0,2	0,6
1,3,5-trimetil-benzene	μg/m³	<0,2	0,5	0,6	0,5	1,1
1,2,4-trimetil-benzene	μg/m³	0,4	0,3	0,5	0,3	0,8

> Campagna di Febbraio 2021

COMPOSTI C.O.V.	u.m.	Lato tangenziale Nord punto 12	Lato est punto 13	Lato sud punto 14
1,2-dicloro-etano	µg/m³	<0,2	<0,2	<0,2
Benzene	µg/m³	3,1	0,8	1,8
1,2-dicloro-propano	µg/m³	<0,2	<0,2	<0,2
Toluene	µg/m³	8,1	2,4	3,1
Etil benzene	µg/m³	3,3	2,5	1,4
meta Xilene + para Xilene	µg/m³	4,2	3,2	2,3
Stirene	µg/m³	0,3	<0,2	<0,2

COMPOSTI C.O.V.	u.m.	Lato	Lato est	Lato sud
orto Xilene	μg/m³	1,2	1,1	1,0
1,3,5-trimetil-benzene	μg/m³	0,3	0,6	0,5
1,2,4-trimetil-benzene	μg/m³	0,5	0,4	1,1

> Campagna di Marzo 2021

COMPOSTI C.O.V.	u.m.	Lato tangenziale Nord punto 12	Lato est punto 13	Lato sud punto 14
1,2-dicloro-etano	μg/m³	<0,2	<0,2	<0,2
Benzene	μg/m³	0,3	0,6	1,0
1,2-dicloro-propano	μg/m³	<0,2	<0,2	<0,2
Toluene	μg/m³	2,0	1,7	3,9
Etil benzene	μg/m³	1,6	1,9	1,1
meta Xilene + para Xilene	μg/m³	3,2	1,6	2,6
Stirene	μg/m³	<0,2	<0,2	0,2
orto Xilene	μg/m³	1,1	0,9	1,0
1,3,5-trimetil-benzene	μg/m³	0,5	0,6	0,3
1,2,4-trimetil-benzene	μg/m³	0,7	0,4	0,5

> Campagna di Aprile 2021

COMPOSTI C.O.V.	u.m.	Lato tangenziale Nord punto 12	Lato est punto 13	Lato sud punto 14
1,2-dicloro-etano	μg/m³	<0,2	<0,2	<0,2
Benzene	μg/m³	0,3	0,6	1,0
1,2-dicloro-propano	μg/m³	<0,2	<0,2	<0,2
Toluene	μg/m³	2,0	1,7	3,9
Etil benzene	μg/m³	1,6	1,9	1,1
meta Xilene + para Xilene	μg/m³	3,2	1,6	2,6
Stirene	μg/m³	<0,2	<0,2	0,2
orto Xilene	μg/m³	1,1	0,9	1,0
1,3,5-trimetil-benzene	μg/m³	0,5	0,6	0,3
1,2,4-trimetil-benzene	μg/m³	0,7	0,4	0,5

> Campagna di Maggio 2021

COMPOSTI C.O.V.	u.m.	Lato	Lato est	Lato sud

		tangenziale Nord punto 12	punto 13	punto 14
1,2-dicloro-etano	μg/m³	<0,2	0,3	<0,2
Benzene	μg/m³	3,2	3,8	3,4
1,2-dicloro-propano	μg/m³	<0,2	<0,2	<0,2
Toluene	μg/m³	0,7	5,0	2,3
Etil benzene	μg/m³	1,9	3,2	0,8
meta Xilene + para Xilene	µg/m³	1,3	11	0,8
Stirene	μg/m³	0,4	3,9	0,2
orto Xilene	µg/m³	1,1	1,3	0,5
1,3,5-trimetil-benzene	μg/m³	<0,2	1,7	<0,2
1,2,4-trimetil-benzene	µg/m³	0,4	2,5	0,3

> Campagna di Giugno 2021

COMPOSTI C.O.V.	u.m.	Lato tangenziale Nord punto 12	Lato est punto 13	Lato sud punto 14
1,2-dicloro-etano	µg/m³	<0,2	<0,2	0,2
Benzene	μg/m³	1,8	1,2	1,0
1,2-dicloro-propano	µg/m³	<0,2	<0,2	<0,2
Toluene	μg/m³	1,7	1,1	0,9
Etil benzene	µg/m³	0,7	0,4	0,4
meta Xilene + para Xilene	µg/m³	0,5	0,3	0,3
Stirene	μg/m³	<0,2	<0,2	0,2
orto Xilene	µg/m³	0,4	0,2	<0,2
1,3,5-trimetil-benzene	μg/m³	<0,2	<0,2	<0,2
1,2,4-trimetil-benzene	μg/m³	0,2	<0,2	0,2

> Campagna di Luglio 2021

COMPOSTI C.O.V.	u.m.	anemometro punto 1	generatore Punto 2	piazzale Punto 3	bianco punto 6
1,2-dicloro-etano	μg/m³	<0,2	<0,2	<0.2	<0,2
Benzene	μg/m³	<0,2	0,28	<0,2	<0,2
1,2-dicloro-propano	μg/m³	<0,2	<0,2	<0,2	<0,2
Toluene	μg/m³	0,41	0,53	0,49	0,45
Etil benzene	μg/m³	<0,2	0,24	<0,2	<0,2

COMPOSTI C.O.V.	u.m.	anemometro	generatore	piazzale	bianco
meta Xilene + para Xilene	μg/m³	0,28	0,24	0,38	0,24
Stirene	μg/m³	<0,2	<0,2	<0,2	<0,2
orto Xilene	μg/m³	<0,2	<0,2	<0,2	<0,2
1,3,5-trimetil-benzene	μg/m³	<0,2	<0,2	0,27	<0,2
1,2,4-trimetil-benzene	μg/m³	<0,2	<0,2	0,48	<0,2

COMPOSTI C.O.V.	u.m.	Piezometro S10 punto 7	Serbatoi di emergenza punto 8	Cabina Enel punto 9
1,2-dicloro-etano	μg/m³	<0,2	<0,2	<0,2
Benzene	μg/m³	<0,2	0,24	<0,2
1,2-dicloro-propano	μg/m³	<0,2	<0,2	<0,2
Toluene	μg/m³	0,33	0,57	0,41
Etil benzene	μg/m³	<0,2	0,24	<0,2
meta Xilene + para Xilene	μg/m³	<0,2	0,52	0,28
Stirene	μg/m³	<0,2	<0,2	<0,2
orto Xilene	μg/m³	<0,2	<0,2	<0,2
1,3,5-trimetil-benzene	μg/m³	<0,2	0,21	<0,2
1,2,4-trimetil-benzene	μg/m³	<0,2	0,59	0,21

COMPOSTI C.O.V.	u.m.	Lato tangenziale Nord punto 12	Lato est punto 13	Lato sud punto 14	discarica punto 15	discarica punto 16
1,2-dicloro-etano	µg/m³	<0,2	<0,2	<0,2	<0,2	<0,2
Benzene	µg/m³	0,35	0,21	<0,2	0,21	0,21
1,2-dicloro-propano	µg/m³	<0,2	<0,2	<0,2	<0,2	<0,2
Toluene	µg/m³	0,53	0,41	0,53	0,53	0,49
Etil benzene	µg/m³	0,24	<0,2	,0,2	<0,2	<0,2
meta Xilene + para Xilene	μg/m³	0,24	0,33	0,52	0,38	0,38
Stirene	µg/m³	<0,2	<0,2	<0,2	<0,2	<0,2
orto Xilene	μg/m³	<0,2	<0,2	<0,2	<0,2	<0,2
1,3,5-trimetil-benzene	µg/m³	<0,2	<0,2	0,43	<0,2	0,21
1,2,4-trimetil-benzene	μg/m³	<0,2	0,21	0,59	0,27	0,37

> Campagna di Agosto 2021

COMPOSTI C.O.V.	u.m.	Lato tangenziale Nord	Lato est punto 13	Lato sud punto 14
-----------------	------	-----------------------------	----------------------	----------------------

		punto 12		
1,2-dicloro-etano	μg/m³	<0,2	<0,2	<0,2
Benzene	μg/m³	<0,2	<0,2	<0,2
1,2-dicloro-propano	μg/m³	<0,2	<0,2	<0,2
Toluene	μg/m³	0,37	0,29	0,39
Etil benzene	μg/m³	<0,2	<0,2	<0,2
meta Xilene + para Xilene	μg/m³	0,33	<0,2	<0,2
Stirene	μg/m³	<0,2	<0,2	<0,2
orto Xilene	μg/m³	<0,2	<0,2	<0,2
1,3,5-trimetil-benzene	μg/m³	0,27	<0,2	<0,2
1,2,4-trimetil-benzene	μg/m³	0,75	<0,2	<0,2

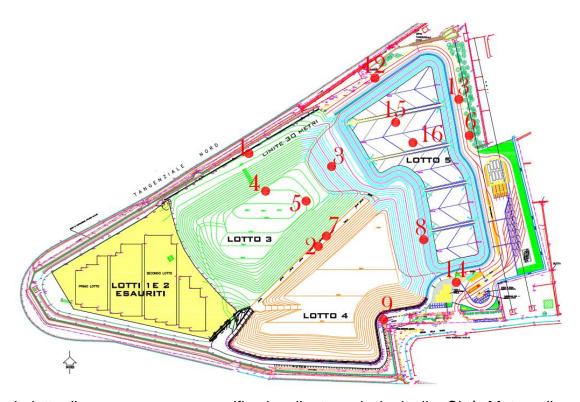
> Campagna di Settembre 2021

COMPOSTI C.O.V.	u.m.	Lato tangenziale Nord punto 12	Lato est punto 13	Lato sud punto 14
1,2-dicloro-etano	μg/m³	<0,2	<0,2	<0,2
Benzene	μg/m³	<0,2	<0,2	<0,2
1,2-dicloro-propano	μg/m³	<0,2	<0,2	<0,2
Toluene	μg/m³	0,33	0,33	0,37
Etil benzene	μg/m³	<0,2	<0,2	<0,2
meta Xilene + para Xilene	μg/m³	0,28	0,24	0,43
Stirene	μg/m³	<0,2	<0,2	<0,2
orto Xilene	μg/m³	<0,2	<0,2	<0,2
1,3,5-trimetil-benzene	μg/m³	<0,2	<0,2	<0,27
1,2,4-trimetil-benzene	µg/m³	0,7	0,27	0,59

> Campagna di Ottobre 2021

COMPOSTI C.O.V.	u.m.	Lato tangenziale Nord punto 12	Lato est punto 13	Lato sud punto 14
1,2-dicloro-etano	μg/m³	<0,35	<0,35	<0,35
Benzene	μg/m³	0,35	0,21	0,21
1,2-dicloro-propano	μg/m³	<0,4	<0,4	<0,4
Toluene	μg/m³	0,74	0,62	0,49
Etil benzene	μg/m³	0,38	<0,28	<0,28
meta Xilene + para Xilene	μg/m³	<0,85	<0,85	<0,85
Stirene	μg/m³	<0,69	<0,69	<0,69
orto Xilene	μg/m³	<0,47	<0,47	<0,47

COMPOSTI C.O.V.	u.m.	Lato	Lato est	Lato sud
1,3,5-trimetil-benzene	µg/m³	0,43	<0,32	<0,32
1,2,4-trimetil-benzene	μg/m³	0,59	0,48	<0,48


> Campagna di Novembre 2021

COMPOSTI C.O.V.	u.m.	Lato tangenziale Nord punto 12	Lato est punto 13	Lato sud punto 14
1,2-dicloro-etano	μg/m³	<0,35	0,35	<0,35
Benzene	μg/m³	0,8	0,77	0,8
1,2-dicloro-propano	μg/m³	<0,4	<0,4	<0,4
Toluene	μg/m³	1,8	2	1,8
Etil benzene	μg/m³	0,66	1,8	0,57
meta Xilene + para Xilene	μg/m³	1,5	3,8	1,6
Stirene	μg/m³	<0,69	1,3	0,79
orto Xilene	μg/m³	0,57	1,7	0,61
1,3,5-trimetil-benzene	μg/m³	0,54	1,2	0,32
1,2,4-trimetil-benzene	μg/m³	0,91	1,6	0,59

> Campagna di Dicembre 2021

COMPOSTI C.O.V.	u.m.	Lato tangenziale Nord punto 12	Lato est punto 13	Lato sud punto 14
1,2-dicloro-etano	μg/m³	<0,35	0,35	<0,35
Benzene	μg/m³	0,56	0,28	0,28
1,2-dicloro-propano	μg/m³	<0,4	<0,4	<0,4
Toluene	μg/m³	1,9	0,82	0,66
Etil benzene	μg/m³	0,33	<0,28	<0,28
meta Xilene + para Xilene	μg/m³	1,2	1	<0,85
Stirene	μg/m³	<0,69	<0,69	0,69
orto Xilene	μg/m³	<0,47	<0,47	<0,47
1,3,5-trimetil-benzene	μg/m³	<0,32	<0,32	<0,32
1,2,4-trimetil-benzene	μg/m³	<0,48	<0,48	<0,48

Ulteriori dettagli possono essere verificati nelle trasmissioni alla Città Metropolitana di Torino con nota protocollo:

315-2021U/DIR/PL/sb del 23/04/2021 Relazione quadrimestrale (campagne di gennaio, febbraio e marzo 2021);

535-2021U/DIR/PL/md del 29/07/2021 Relazione quadrimestrale (campagne di aprile, maggio e giugno 2021):

680-2021U/DIR/PL/sb del 22/10/2021 Relazione quadrimestrale (campagne di luglio, agosto e settembre 2021);

48-2022U/DIR/PL/sb del 27/01/2022 Relazione quadrimestrale (campagne di ottobre, novembre e dicembre 2021).

3) Eventuali interventi periodici di manutenzione degli impianti e delle strutture di copertura nonché di disinfestazione e derattizzazione dell'area

Non sono stati effettuati in quanto non necessari.

4) Stato di avanzamento delle operazioni di recupero ambientale

Nel quinto lotto sono iniziate le ricoperture delle parti spondali lato nord e parte della parete est con la stesura degli strati di ghiaia, argilla e telo in HDPE.

5) Verifica dell'efficienza del sistema di impermeabilizzazione di tutti i lotti della discarica, sia tramite la rete di monitoraggio sotto telo, ove presente, sia mediante verifiche dirette (es, telecamera mobile) all'interno del sistema stesso, qualora accessibile

Le verifiche condotte entro i sistemi di monitoraggio, peraltro procedurate dal Sistema di Gestione Ambientale, hanno confermato la perfetta tenuta idraulica del sistema di impermeabilizzazione.

6) Verifica dell'efficienza del sistema di estrazione del percolato, anche mediante l'effettuazione di apposite prove in sito

La verifica dell'efficienza del sistema di estrazione del percolato viene quotidianamente condotta con l'attività di drenaggio del fondo della discarica. Le aree attualmente più produttive sono quelle relative ai settori ancora in coltivazione e periodicamente sono rendicontate produzioni e relativi battenti idraulici. Eventuali situazioni anomale di produzione, ad oggi non rilevate, saranno oggetto di specifici interventi di lavaggio e spurgo delle aree produttive (ghiaietto di drenaggio e tubazioni fessurate) con l'impiego di getti di acqua in pressione.

7) Una relazione sullo smaltimento di rifiuti di amianto o contenenti amianto, contenente anche gli obblighi previsti dal D.Lgs. n. 81/08, allegando i risultati di monitoraggio, effettuati con cadenza minima annuale, nel rispetto di quanto previsto dal D.Lgs. n. 36/2003 e dal D.M. del 27/09/2010.

➤ Monitoraggio delle fibre di amianto ai sensi del D.Lgs. n. 81 del 09/04/2008 e s.m.i.

Con cadenza annuale viene verificata l'eventuale presenza di rischi da esposizione professionale all'amianto aerodisperso per gli addetti alle attività produttive dell'azienda, in conformità al D.Lgs. n. 81/08 e s.m.i.

L'ultima indagine è stata effettuata nel mese di Luglio 2021 e dall'esame dei risultati si è riscontrato che in nessuno dei punti controllati si raggiunge il valore di 20 ff/litro, indicate dal D.M. 6/9/94 come indice di una situazione di inquinamento (da amianto) in corso e di 0,1 ff/cc (100ff/litro) indicate dal D.L. 257/06 e dal D.Lgs. n. 81/08 e s.m.i. come valore limite di esposizione su 8 ore lavorative.

Si riporta di seguito la tabella con i risultati ottenuti:

Punti di campionamento	Concentrazione fibre (ff/NI)	Limite D.Lgs. 257/06 e 81/08 (ff/l)
B1	<0,38*	
B2	<0,38*	
B3	<1,3*	
B4	<1,3*	
Α	<1,3*	
В	<1,3*	100
С	<1,3*	
D	<0,38*	
Е	<1,3*	
F	<1,3*	
G	<0,38*	

Punti di campionamento	Concentrazione fibre (ff/NI)	Limite D.Lgs. 257/06 e 81/08 (ff/I)
P1	<0,69*	
P2	<0,69*	
P3	<0,91*	

^{*} Durante la lettura non sono state individuate fibre di amianto. Il valore indicato corrisponde al limite fiduciario superiore di una distribuzione poissoniana (95% di probabilità) indicato dal laboratorio per una lettura pari a zero fibre nei campi conteggiati.

dove

Punto B1 – bianco lato tangenziale (in prossimità del piezometro S8);

Punto B2 – bianco lato tangenziale (in prossimità del piezometro S7);

Punto B3 – bianco in prossimità condotta convogliamento percolato lotto 3 cella 2;

Punto B4 – bianco in prossimità condotta convogliamento percolato lotto 3 cella 7;

Punto A - zona uffici - Pesa;

Punto B – zona uffici - parcheggio dipendenti;

Punto C – area piazzale sosta mezzi;

Punto D – Superficie coperta vasca quarto lotto;

Punto E – fronte quinto lotto in coltivazione;

Punto F – zona serbatoi stoccaggio percolato;

Punto G – area di servizio quinto lotto;

Punto P1 – operatore smaltimento su escavatore;

Punto P2 – personale – operatore discarica, addetto scarico sacconi;

Punto P3 – personale – addetto campionamento.

➤ Monitoraggio delle fibre di amianto ai sensi del D.Lgs. 36/2003 e del D.Lgs. 121/2020

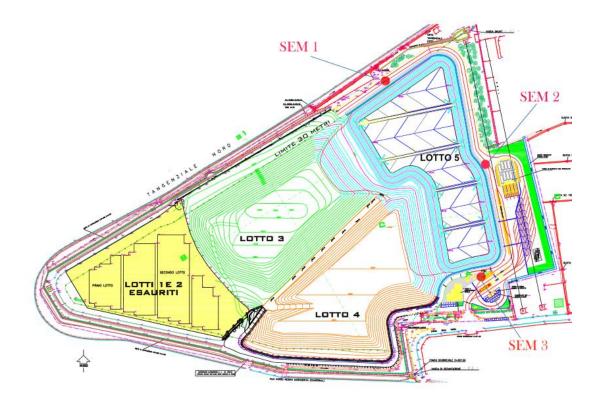
Nel corso dell'anno 2021 è stato effettuato il monitoraggio delle fibre libere di amianto presenti in atmosfera attraverso l'utilizzo di tecniche analitiche di microscopia ottica in contrasto di fase (MOCF), secondo quanto previsto dal D.Lgs n 36/2003 e s.m.i., che

hanno fornito le seguenti risultanze:

Data campionamento	Sigle campione	Risultato [fibre/l]	Limite indicativo di una situazione di inquinamento in atto da D.M. 06/09/1994 [fibre/l]	Quantitativo di rifiuti conferiti contenti amianto suddivisi per trimestre		
	Monte di discarica	1,50				
4.4/04/0004	Valle di discarica	1,50				
14/01/2021	Monte di discarica	0,67				
	Valle di discarica	0,67				
	Monte di discarica	2,2				
22/02/2024	Valle di discarica	3,0	20	Kg 10.161.030		
23/02/2021	Monte di discarica	2,0	20	m³ 12.436		
	Valle di discarica	3,4				
	Monte di discarica	0,84				
17/03/2021	Valle di discarica	2,0				
17/03/2021	Monte di discarica	2,0				
	Valle di discarica	0,84				
	Monte di discarica	0,67				
14/04/2021	Valle di discarica	0,50				
14/04/2021	Monte di discarica	1,50				
	Valle di discarica	0,84				
	Monte di discarica	0,50				
20/05/2021	Valle di discarica	0,50	20	Kg 11.168.190		
20/03/2021	Monte di discarica	0,67	20	m³ 12.863		
	Valle di discarica	0,84				
	Monte di discarica	0,34				
15/06/2021	Valle di discarica	0,34				
13/00/2021	Monte di discarica	1,30				
	Valle di discarica	0,84				
	Monte di discarica	0,5				
12/07/2021	Valle di discarica	1,7				
12/01/2021	Monte di discarica	1				
	Valle di discarica	0,84	20	Kg 7.778.780		
	Monte di discarica	0,5	20	m ³ 8.234		
25/08/2021	Valle di discarica	0,67				
23/00/2021	Monte di discarica	1,2				
	Valle di discarica	0,34				

Data campionamento	Sigle campione	Risultato [fibre/l]	Limite indicativo di una situazione di inquinamento in atto da D.M. 06/09/1994 [fibre/l]	Quantitativo di rifiuti conferiti contenti amianto suddivisi per trimestre
	Monte di discarica	1,1		
4.0/00/0004	Valle di discarica	1,8		
16/09/2021	Monte di discarica	1,6		
	Valle di discarica	0,9		
	Monte di discarica	0,84		
00/40/0004	Valle di discarica	0,34		
20/10/2021	Monte di discarica	0,67		
	Valle di discarica	0,67		
	Monte di discarica	1,0		
04/44/0004	Valle di discarica	0,5	90	Kg 4.812.850
24/11/2021	Monte di discarica	0,67	20	m ³ 4.477
	Valle di discarica	0,5		
	Monte di discarica	0,67		
2.44.242.24	Valle di discarica	0,84		
21/12/2021	Monte di discarica	1,0		
	Valle di discarica	0,84		

Dalla tabella si può facilmente notare come i valori di amianto in atmosfera misurati nel corso dell'anno siano molto inferiori ai limiti del D.M. 06/09/1994, che fissa in 20 ff/litro il valore limite di una situazione di inquinamento da amianto in corso.


I campionamenti sono stati effettuati nei giorni in cui erano presenti conferimenti di rifiuti contenenti amianto.

Nel corso dell'anno 2021 a partire dal mese di gennaio, con frequenza trimestrale, è stato effettuato anche il monitoraggio delle fibre libere di amianto presenti in atmosfera attraverso l'utilizzo di tecniche analitiche di microscopia elettronica a scansione (SEM) che ha fornito le seguenti risultanze:

	PUNTO DI CAMPIONAMENTO					
DATA DI CAMPIONAMENTO	SEM 1	SEM 2	SEM 3			
	[ff/l]	[ff/I]	[ff/l]			
21/01/2021	<0,47*	<0,47*	<0,47*			
13/04/2021	<0,47*	<0,47*	<0,47*			
15/07/2021	<0,38*	<0,38*	<0,38*			
18/10/2021	<0,38*	<0,38*	<0,38*			

^{*} Durante la lettura non sono state individuate fibre di amianto. Il valore indicato corrisponde al limite fiduciario superiore di una distribuzione poissoniana (95% di probabilità) indicato dal laboratorio per una lettura pari a 0 fibre nei campi conteggiati.

Di seguito si riportano i quantitativi in peso ed in volume dei rifiuti contenenti amianto smaltiti nel corso del 2021 suddivisi per CER:

Trimestre di riferimento	Tr	Trim1		im2	Ţ	rim3	Т	rim4	To	otale
CER	Peso (kg)	Volume (mc)	Peso (kg)	Volume (mc)	Peso (kg)	Volume (mc)	Peso (kg)	Volume (mc)	Peso (kg)	Volume (mc)
170503*	5.797.400	4.927	6.947.740	5.697	4.598.470	2.824	4.045.320	3.042	21.388.930	16.490
170507*					14.240	15,00	26.640	20,00	40.880	35,00
170601*	959.330	3.543,00	983.970	3.207,125	589.820	1.675,125	171.000	744	2.704.120	9.169,25
170603*	41.160	434,00	42.000	340,00	38.610	673,00	5.520	34,00	127.290	1.481,00
170605*	1.628.220	2.034,695	1.959.930	2.650,753	1.573.570	2.107,635	342.090	452,555	5.503.810	7.245,64
170903*	1.310.390	1.200,00	552.420	438	830.660	785,00	113.220	92,00	2.806.690	2.515,00
190813*			51.980	60	85.900	100			137.880	160,00
191301*	424.530	297	630.150	470	47.510	54	109.060	92	1.211.250	913
Totale complessivo	10.161.030	12.435,70	11.168.190	12.862,88	7.778.780	8.233,76	4.812.850	4.476,56	33.920.850	38.008,89

8) Stato di avanzamento dello studio del particolato aerodisperso, secondo le modalità contenute nel Piano di Sorveglianza e Controllo.

In Allegato 1 si riportano le relazioni relative allo studio sul particolato atmosferico eseguito nei mesi di febbraio e luglio/agosto 2021.

9) Un documento che contenga le valutazioni, i dati ed i calcoli effettuati al fine di stabilire l'assoggettabilità agli obblighi di dichiarazione EPRTR per l'anno di riferimento.

In allegato 2 si riporta la dichiarazione EPRTR relativa ai dati anno 2021 (file firmato digitalmente ed inviato all'ISPRA ed alla Città Metropolitana di Torino).

10) Indicazione delle analisi effettuate sui rifiuti smaltiti in discarica, effettuate con cadenza minima annuale, al fine di garantire il rispetto di quanto riportato al comma 4 dell'art. 11 del D.Lgs. 36/2003 e smi.

Si riporta di seguito la tabella con indicazione delle omologhe sottoposte a verifica di conformità, del Codice EER, del produttore e del numero di Rapporto di prova del

laboratorio che ha eseguito l'analisi.

Data	n° Omologa	CER	Produttore	Data	Numero
05/01/2021	2164	17 06 01*	Fenice S.r.L	15/01/2021	169902/21
08/01/2021	2162	17 09 03*	Fenice S.r.L	15/01/2021	169903/21
13/01/2021	2152	17 05 03*	Ecosistem S.r.L	20/01/2021	170041/21
14/01/2021	2170	19 03 04*	Ambienthesis S.p.A	20/01/2021	170042/21
18/01/2021	2126	17 06 03*	Grassano SpA	22/01/2021	170099/21
20/01/2021	2161	17 06 01*	Ambienthesis S.p.A	27/01/2021	170270/21
26/01/2021	2169	19 13 01*	Ambienthesis S.p.A	29/01/2021	170383/21
26/01/2021	2171	17 06 01*	Esse A3 S.r.L	29/01/2021	170384/21
03/02/2021	2172	17 06 03*	GPI S.r.L	10/02/2021	171068/21
09/02/2021	2159	17 06 01*	Ambienthesis S.p.A	12/02/2021	171256/21
09/02/2021	2173	17 05 03*	Acr di Reggiani Albertino S.p.A	12/02/2021	171257/21
16/02/2021	2175	17 05 03*	Petroltecnica S.p.A	19/02/2021	171490/21
16/02/2021	2176	10 04 01*	Piomboleghe S.r.L	19/02/2021	171491/21
02/03/2021	2157	17 06 03*	Ecos S.r.L	05/03/2021	172261/21
05/03/2021	2188	19 03 04*	Ambienthesis S.p.A	24/03/2021	1110222/21
08/03/2021	2165	17 05 03*	Nucleco S.p.A	24/03/2021	1110224/21
09/03/2021	2187	17 06 03*	Ambienthesis S.p.A	24/03/2021	1110226/21
10/03/2021	2088	17 06 03*	Ecosistem S.r.L	17/03/2021	172857/21
10/03/2021	2111	17 06 03*	Ecosistem S.r.L	17/03/2021	172858/21
12/03/2021	2182	17 05 03*	Ambienthesis S.p.A	24/03/2021	1110216/21
15/03/2021	2167	17 05 03*	Nucleco S.p.A	24/03/2021	1110218/21
15/03/2021	2180	19 12 11*	Amiat S.p.A	24/03/2021	1110220/21
17/03/2021	2185	17 06 03*	Ecosistem S.r.L	31/03/2021	1111725/21
23/03/2021	2186	17 06 01*	IL Recupero S.r.L	30/03/2021	1111495/21
24/03/2021	2190	17 05 03*	Acr di Reggiani Albertino S.p.A	01/04/2021	1111863/21
25/03/2021	2193	17 06 03*	Ecos S.r.L	01/04/2021	1111865/21
31/03/2021	2166	17.06.03*	Refecta S.r.L	15/04/2021	1114503-04/21

Data	n° Omologa	CER	Produttore	Data	Numero
31/03/2021	2191	17.06.03*	Ecosistem S.r.L	15/04/2021	1114505-06/21
01/04/2021	2196	17.06.05*	Sepi Ambiente S.r.L	15/04/2021	1114507-08/21
02/04/2021	2145	17.06.01*	Rieco S.r.L	15/04/2021	1114509-10/21
06/04/2021	2184	17.06.03*	II Recupero S.r.L	15/04/2021	1114511-12/21
06/04/2021	2197	17.06.05*	Fenice S.r.L	15/04/2021	1114513-14/21
19/04/2021	2198	17.05.03*	Nucleco S.p.A	04/05/2021	1117774-75/21
19/04/2021	2199	17.05.03*	Nucleco S.p.A	04/05/2021	1117776-77/21
20/04/2021	2204	17.05.03*	Grassano S.p.A	04/05/2021	1117778-79/21
23/04/2021	2205	17.06.03*	Fenice S.r.L	30/04/2021	1117539-40/21
26/04/2021	2203	17.06.03*	Rosso S.r.L	30/04/2021	1117541-42/21
27/04/2021	2209	17.06.01*	Esse A3 S.r.L	30/04/2021	1117543-44/21
29/04/2021	2208	19.03.04*	Ambienthesis S.p.A	05/05/2021	1118047-48/21
04/05/2021	2201	17.05.03*	Ambienthesis S.p.A	10/05/2021	1118559-60/21
07/05/2021	2214	17.05.03*	Grassano S.p.A	20/05/2021	1120577-78/21
10/05/2021	2202	17.06.03*	Ambienthesis S.p.A	20/05/2021	1120579-80/21
12/05/2021	2200	17.06.05*	Ecos S.r.L	20/05/2021	1120580-81/21
17/05/2021	2119	19.03.04*	Sereco Piemonte S.p.A.	21/05/2021	1120667-68/21
18/05/2021	2177	17.06.05*	Azzurra S.r.L a socio unico	21/05/2021	1120669-70/21
18/05/2021	2211	17.05.03*	Acr di Reggiani Albertino S.p.A	21/05/2021	1120670-71/21
19/05/2021	2206	17.06.01*	Unirecuperi S.r.L	31/05/2021	1121619-20/21
19/05/2021	2207	17.06.05*	Unirecuperi S.r.L	31/05/2021	1121621-22/21
20/05/2021	2210	17.05.03*	Acr di Reggiani Albertino S.p.A	31/05/2021	1121623-24/21
27/05/2021	2181	17.05.03*	Ambienthesis S.p.A	04/06/2021	1121891-92/21
01/06/2021	2143	19.13.02	Grassano S.p.A	16/06/2021	1123073-74/21
01/06/2021	2216	17.06.03*	Ambienthesis S.p.A	16/06/2021	1123075-76/21
03/06/2021	2219	17.05.03*	Unirecuperi S.r.L	16/06/2021	1123077-78/21
08/06/2021	2218	17.06.05*	Unirecuperi S.r.L	16/06/2021	1123079-80/21
10/06/2021	2220	19.03.04*	Ambienthesis S.p.A	16/06/2021	1123161-62/21
14/06/2021	2226	19.08.13*	Marazzato Soluzioni Ambientali S.r.L	22/06/2021	1123951-52/21
21/06/2021	2215	17.06.05*	Sereco Piemonte S.p.A.	01/07/2021	1125060-61/21
21/06/2021	2229	17.06.01*	Grassano S.p.A	01/07/2021	1125062-63/21
22/06/2021	2224	10.03.23*	Sereco Piemonte S.p.A.	01/07/2021	1125064-65/21
23/06/2021	2174	17.05.03*	Unirecuperi S.r.L	01/07/2021	1125130-31/21
23/06/2021	2228	17.06.03*	GPI S.r.L	01/07/2021	1125132-33/21
29/06/2021	2227	17.06.01*	Rieco S.r.L	05/07/2021	1125468-69/21
30/06/2021	2217	17.06.03*	Ambienthesis SpA	07/07/2021	1125690-91/21
30/06/2021	2232	17.06.01*	Unirecuperi SrL	07/07/2021	1125692-93/21
05/07/2021	2296	17.06.03*	Iren Ambiente SpA	09/07/2021	1126299-00/21
06/07/2021	2247	10.04.01*	Eco-Bat SrL	09/07/2021	1126301-02/21
07/07/2021	2240	17.06.03*	Beta Ambiente SrL	16/07/2021	1127748-49/21
07/07/2021	2244	19.13.01*	Ecosistem SrL	16/07/2021	1127750-51/21
13/07/2021	2299	17.09.03*	Premium Distribuzione SrL	22/07/2021	1128927-28/21
20/07/2021	2300	17.05.03*	Nucleco SpA	30/09/2021	1136008-09/21

Data	n° Omologa	CER	Produttore	Data	Numero
20/07/2021	2307	17.09.03*	Herambiente SrL	30/09/2021	1136010-11/21
23/07/2021	2195	17.09.03*	Ambienthesis SpA	30/07/2021	1129936-37/21
23/07/2021	2312	17.06.03*	Iren Ambiente SpA	30/07/2021	1129934-35/21
27/07/2021	2318	17.06.01*	Tecno Ambiente SrL	30/07/2021	1129938-39/21
23/08/2021	2315	19.03.04*	Ambienthesis SpA	30/08/2021	1132540-41/21
25/08/2021	2317	17.06.01*	Rieco SrL	02/09/2021	1133122-23/21
26/08/2021	2320	17.05.03*	Idea SrL	03/09/2021	1133360-61/21
26/08/2021	2321	17.05.03*	Idea SrL	02/09/2021	1133126-27/21
26/08/2021	2309	17.06.03*	Eco.Impresa SrL	02/09/2021	1133128-29/21
31/08/2021	2324	17.05.07*	Iren Ambiente SpA	01/10/2021	1136063-64/21
31/08/2021	2325	17.05.07*	Iren Ambiente SpA	30/09/2021	1136016-17/21
02/09/2021	2234	19.03.04*	Iren Ambiente SpA	08/09/2021	178368/21
14/09/2021	2326	17.06.03*	C.R SrL	30/09/2021	1136022-23/21
16/09/2021	2308 *	17.06.05*	Ecosistem SrL	30/09/2021	1136032-33/21
27/09/2021	2329 *	19.03.04*	Iren Ambiente SpA	06/10/2021	1136531-32/21
23/07/2021	2312	17.06.03*	Iren Ambiente SpA	30/07/2021	1129934-35/21
27/07/2021	2318	17.06.01*	Tecno Ambiente SrL	30/07/2021	1129938-39/21
04/10/2021	2334	19.08.14	Iren Ambiente S.p.A	11/10/2021	1136914-15/21
05/10/2021	2335	17.06.01*	Iren Ambiente S.p.A	11/10/2021	1136916-17/21
12/10/2021	2337	17.09.03*	Iren Ambiente S.p.A	24/11/2021	1141480-81/21
12/10/2021	2155	17.09.03*	Ambienthesis S.p.A	24/11/2021	1141482-83/22
19/10/2021	2322	17.06.03*	Iren Ambiente S.p.A	24/11/2021	1141472-73/21
27/10/2021	2278	17.06.03*	Ecosistem S.r.L	10/11/2021	1139439-40/21
27/10/2021	2327	17.05.03*	ACR Reggiani Albertino S.p.A	10/11/2021	1139441-42/21
28/10/2021	2328	17.05.03*	ACR Reggiani Albertino S.p.A	10/11/2021	1139443-44/21
04/11/2021	2338	17.05.03*	Unieco Holding Ambiente S.r.L	18/11/2021	1141008-09/21
09/11/2021	2330	17.06.03*	GPI S.r.L	18/11/2021	1141016-17/21
10/11/2021	2316	17.05.03*	Nucleco S.p.A	18/11/2021	1141018-19/21
17/11/2021	2340	17.05.03*	Unieco Holding Ambiente S.r.L	24/11/2021	1141466-67/21
23/11/2021	2331	17.05.03*	Herambiente Servizi Industriali S.r.L	26/11/2021	1141590-91/21
02/12/2021	2339	17.05.04	Eni Rewind S.p.A.	14/01/2022	1145906-07/22
14/12/2021	2341	19.03.04*	Ambienthesis S.p.A	14/01/2022	1145863-64/22
16/12/2021	2332	17.06.03*	Rieco S.r.I.	14/01/2022	1145859-60/22

Il carico con la riga a sfondo rosso è stato campionato per verifica di conformità dall'ARPA.

Barricalla S.p.a. Il Direttore Tecnico Ing. Pasquale Luciani

Allegato 1

Rif.	0319C/21
------	----------

Torino, 31 marzo 2021

Spett.le **Barricalla S.p.A**Via Brasile 1
10093 Collegno
TORINO

OGGETTO: Caratterizzazione biologica delle polveri aerodisperse

In riferimento alla vs. richiesta di analisi, inviamo i risultati delle valutazioni svolte su campioni di polveri aerodisperse (frazione PM_{10}) prelevati c/o la discarica.

Cordiali saluti

1. PREMESSA

Con nota protocollo n. 433-2020U/DIR/PL/sb del 04/03/2020 la società Barricalla S.p.a. ha trasmesso agli Enti Competenti la relazione conclusiva relativa alle attività di monitoraggio previste dallo *Studio del particolato aerodisperso,* come stabilito al punto 9) del documento D.D. di Modifica Sostanziale di AIA n. 317- 35088/2017 del 11/12/2017 e smi.

Lo studio condotto nel triennio 2017-2019, inserito nel Piano di Sorveglianza e Controllo (nota protocollo n. 1106-2016U/DIR/PL/sb del 02/11/2016), è stato finalizzato ad acquisire informazioni ambientali che consentissero all'Azienda di conoscere in modo più completo le eventuali emissioni/immissioni prodotte durante la sua attività al fine di garantire un adeguato controllo del comparto aria e quindi di tenere sotto controllo la **propria causalità e responsabilità** nell'indurre eventi dannosi attraverso le emissioni atmosferiche provenienti dalle diverse sorgenti impiantistiche.

Questa attività è stata eseguita così come richiesto al punto 12) della D.D. n. 267-26765/2016 del 06/10/2016 con la quale è stato rilasciato il provvedimento di modifica sostanziale della determina n. 262-42262/2012 del 30/10/2012 (rilascio di Autorizzazione Integrata Ambientale) che autorizza il progetto di "Sfruttamento e valorizzazione delle restanti superfici allo smaltimento dei rifiuti e completamento del parco fotovoltaico" presentato dalla Società Barricalla SpA. L'atto ha ricompreso le prescrizioni aggiornate relative al Lotto 3 ed al Lotto 4 in attività, nonché ha autorizzato la realizzazione e la gestione del Lotto 5. Successivamente, nel 2017 con DD 317-35088/2017 del 11/12/2017 è stata autorizzata l'ulteriore sopraelevazione del lotto 3 (per un volume massimo autorizzato di 557.500 m³ di rifiuti).

A seguito della trasmissione della relazione conclusiva, la CMTO con nota 25702/TA1/GLS/SR, chiede alla Società Barricalla, nelle more delle osservazioni richieste al Comune di Collegno ed all'ARPA Dipartimento Territoriale Piemonte Nord Ovest, di proseguire le attività previste dallo Studio.

Nel corso del 2020, durante l'emergenza sanitaria da Covid-19, e nonostante le restrizioni adottate a livello nazionale, la Società ha proseguito i monitoraggi effettuando, oltre al controllo previsto in estate, anche una campagna di monitoraggio nel mese di aprile 2020 basandosi sulle seguenti considerazioni:

- Eseguire i prelievi in questo periodo è stato ritenuto di estremo interesse perché si è
 potuto effettuare una "fotografia" di una situazione normalmente considerata "unica"
 ed "improbabile" in quanto caratterizzata da un'improvvisa e contemporanea
 sospensione di tutte le attività commerciali, di ristorazione, di molte attività lavorative
 e scolastiche con la conseguente significativa riduzione in primo luogo del traffico
 autoveicolare, ma anche altre di emissioni di tipo industriale
- La società, data la natura delle proprie attività ritenute essenziali, ha proseguito il lavoro anche durante l'emergenza Covid e pertanto l'esecuzione dei monitoraggi in assenza di altre sorgenti emissive sul territorio (o comunque in situazione di forte contenimento delle stesse) consente di apprezzare meglio il suo apporto sul comparto atmosfera.

Nel corso del 2021, in riferimento ed in accordo con le osservazioni riportate da Arpa Piemonte nel documento prot. N. 86612 "Osservazioni tecniche Discarica per rifiuti pericolosi SpA – osservazioni tecniche protocollo di monitoraggio integrativo" sono state proseguite le attività di monitoraggio avendo cura di:

- eseguire i prelievi del particolato atmosferico contestualmente nelle due postazioni al
 fine di una più corretta comparazione dei risultati ottenuti e prevedere la
 determinazione della componente metallica nei campioni di PM₁₀ con particolare
 riferimento agli analiti per i quali vengono previste deroghe nella composizione
 dell'eluato dei rifiuti ammessi allo smaltimento. Già a partire dalla campagna eseguita
 nel mese di aprile 2020 è stata adottata questa strategia di monitoraggio e tutti i
 monitoraggi successivi sono in linea con quanto richiesto dagli enti di controllo.
- Nel corso del monitoraggio invernale del 2021 è stato eseguito, contestualmente ai prelievi di particolato atmosferico con i campionatori ad alto volume e limitatamente al periodo temporale di 1 settimana, il campionamento gravimetrico delle polveri mediante sistemi di campionamento del PM₁₀ sequenziali in linea con l'intervallo di tempo stabilito per le centraline tra le ore 00 e le ore 24. Lo scopo di questo monitoraggio consente di verificare la conformità dei risultati che si ottengono con quanto rilevato sul territorio. A questo proposito si ritiene necessario precisare che la finalità dell'utilizzo dei campionatori ad alto volume non è in via prioritaria la valutazione gravimetrica del particolato bensì la possibilità di prelevare idonee quantità di campione per la successiva caratterizzazione chimica e biologica. I dati gravimetrici relativi a 24 h di prelievo che si ottengono dai campionatori ad alto volume, hanno pertanto esclusivamente la finalità di capire l'andamento della concentrazione delle polveri durante il prelievo nelle postazioni e valutare eventuali apporti dovuti alle attività in essere della discarica. Il confronto con i risultati desunti dalla rete provinciale di rilevamento ARPA, che risponde a specifici requisiti normativi e che prevede una necessaria sincronizzazione degli strumenti di monitoraggio, vuole semplicemente avere la finalità di valutare, per comparazione, la distribuzione del particolato sul territorio al fine di giudicare se, a fronte di dati anomali rilevati durante i monitoraggi, si possono trovare analoghi scostamenti sul territorio dovuti ad es. a specifiche situazioni meteoclimatiche.

In quest'ottica, sono state eseguite campagne semestrali che hanno previsto

- Campionamento e determinazione gravimetrica delle polveri PM₁₀
- Valutazione delle potenzialità mutagene delle polveri PM₁₀ mediante esecuzione del test di Ames (Salmonella/microsome assay)
- Caratterizzazione chimica delle polveri PM₁₀ prendendo in esame gli Idrocarburi Policiclici Aromatici e la componente metallica quali traccianti ideali per la caratterizzazione del loro profilo chimico e tossicologico.

Il presente documento rappresenta il rapporto delle attività effettuate nell'ambito della prima campagna del 2021.

2. CAMPIONAMENTI E LOCALIZZAZIONE PUNTI PRELIEVO

La campagna di monitoraggio della <u>frazione PM₁₀ di particolato atmosferico</u> eseguita nel mese di febbraio 2021 ha previsto, come punti di monitoraggio, gli stessi già oggetto di indagine a partire dal 2015 ovvero presso la centralina A della discarica (postazione rimasta invariata rispetto ai monitoraggi eseguiti negli anni precedenti) ed in prossimità del lotto 5 (figura 1), al fine di poter tenere sotto controllo la nuova parte della discarica in cui vengono attualmente conferiti i rifiuti.

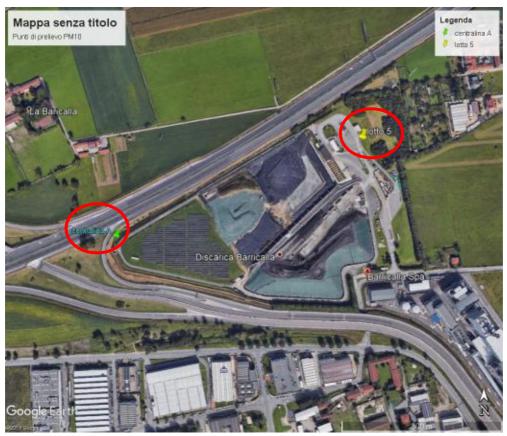


Figura 1 – dislocazione centraline particolato atmosferico

Per ciascuna postazione sono stati eseguiti in contemporanea 5 campionamenti giornalieri consecutivi, della durata di 24 ore ciascuno utilizzando sia il sistema di campionamento ad alto volume sia il campionamento sequenziale a basso volume.

Nella tabella 1 viene riassunto il calendario dei prelievi:

Tabella 1: periodo di campionamento del particolato PM₁₀ - campionatori alto volume

Tabella 1. periodo di campionamento dei particolato i ivi ₁₀ campionatori dito volume							
SIT	SITO DI CAMPIONAMENTO – Centralina A e lotto 5						
	Dalle h 10.05 del 01.02.2021 alle h 10.05 del 02.02.2021						
	Dalle h 10.13 del 02.02.2021 alle h 10.13 del 03.02.2021						
Centralina A	Dalle h 10.33 del 03.02.2021 alle h 10.33 del 04.02.2021						
	Dalle h 10.37 del 04.02.2021 alle h 10.37 del 05.02.2021						
	Dalle h 10.00 del 08.02.2021 alle h 10.10 del 09.02.2021	variabile					
	Dalle h 10.20 del 01.02.2021 alle h 10.20 del 02.02.2021	variabile					
	Dalle h 10.29 del 02.02.2021 alle h 10.29 del 03.02.2021						
Lotto 5	Dalle h 10.50 del 03.02.2021 alle h 10.46 del 04.02.2021						
	Dalle h 10.51 del 04.02.2021 alle h 10.50 del 05.02.2021						
	Dalle h 10.30 del 08.02.2021 alle h 10.30 del 09.02.2021						

SIT	SITO DI CAMPIONAMENTO – Centralina A e lotto 5				
Centralina A	Campionamenti dalle 00.00 alla 24.00 a partire dal giorno	variabile			
e lotto 5	02.02.2021	variablic			

3. ATTIVITÀ DELLA DISCARICA DURANTE I PRELIEVI

Durante il <u>monitoraggio</u> sono stati conferiti nelle aree del lotto 5 le seguenti tipologie di rifiuti (e relative quantità):

Tabella 2 – rifiuti conferiti dal 01/02/2021 al 10/02/2021

					Data				
CER – quantità kg	01/02/2021	02/02/2021	03/02/2021	04/02/2021	05/02/2021	08/02/2021	09/02/2021	10/02/2021	Totale complessivo
100401*	82410	83010	56000	56200	86440	26430	83180	112960	586630
170503*	145800	87740	90230	61440	61220	175120	172040	50360	843950
170601	1600	27980	3980	25370	23170	17940	19390	15570	135000
170603*	43230	36750	71400	16180	92380	47320	53210	109340	469810
170605*	1030	19990	4950	30760	/	43290	28110	24900	15303
170903	/	/	49820	49520	22160				121500
190304*	437070	525760	527510	49690	522000	490440	522620	429200	3504290
Totale complessivo	711140	781230	803890	289160	807370	800540	878550	742330	5814210

Rifiuto	Quantità Kg	Quantità MC
100401	586630	199,839
170503	843950	665,9
170601	135000	614
170603	469810	1899,97
170605	15303	210,42
170903	121500	109
190304	3504290	2727,36
Totale complessivo	5814210	6426,49

Le tipologie di rifiuti smaltite nel periodo di indagine appartengono alle seguenti categorie:

- <u>Attività di trattamento:</u> es. 190304 (rifiuti contrassegnati come pericolosi, parzialmente stabilizzati diversi da quelli di cui al punto 190308 (mercurio parzialmente stabilizzato),
- Attività di recupero dei rifiuti: es 100401 (scorie della produzione primaria e secondaria)
- Attività di bonifica di materiali contenenti amianto: 170601 (materiali isolanti contenenti amianto) e 170605 (materiali da costruzione contenenti amianto)
- Attività di costruzioni e demolizioni: 170503 (terra e rocce, contenenti sostanze pericolose),
- <u>Rifiuti delle operazioni di costruzione e demolizione</u> (compreso il terreno proveniente da siti contaminati): 170903 altri rifiuti dell'attività di costruzione e demolizione (compresi rifiuti misti) contenenti sostanze pericolose

4. MODALITÀ DI CAMPIONAMENTO

I prelievi del particolato atmosferico sono stati eseguiti secondo le modalità indicate nel **D.M. n. 155** del **13/08/2010** ovvero in conformità a quanto riportato nella **Direttiva 1999/30/CE**.

Per il prelievo della frazione PM_{10} sono stati utilizzati due campionatori ad alto volume (TISH Environmental, INC., mod. TE-6070V, Analitica— Strumenti Scientifici) conformi al metodo EPA ed al D.M. 15/04/94, con un flusso di aspirazione di 1.1 m³/min (10%) ed utilizzando filtri in fibra di vetro 20.3 x 25.4 cm. Il campionatore utilizzato funziona secondo il seguente principio: aspira l'aria atmosferica a flusso costante attraverso un sistema di ingresso di geometria particolare per cui il particolato sospeso viene separato inerzialmente in uno o più frazioni, in base alle dimensioni. Le frazioni del particolato con diametro aerodinamico inferiore o uguale a 10 μ m vengono raccolte su appositi filtri per il periodo di campionamento stabilito.

In parallelo, in ciascuna postazione di prelievo sono stati posizionati due campionatori sequenziali Skypost con testa di prelievo per PM10 e filtri in fibra di vetro da 47mm.

Il metodo di riferimento per il campionamento e la misurazione del PM_{10} segue quanto indicato nella norma UNI EN 12341:2014 per PM_{10} o $PM_{2.5}$.

5. PREPARAZIONE DEI CAMPIONI PER LE ANALISI

I filtri per la valutazione del particolato atmosferico stati condizionati prima e dopo il campionamento in una camera di pesatura condizionata, modello "Cappa Activa Climatic Acquaria", ad una temperatura di 20 ± 1 °C e un'umidità relativa di 50 ± 5 %, come previsto dalle normative riportate. L'analisi gravimetrica è stata effettuata utilizzando una bilancia analitica con una risoluzione di $10~\mu g$ modello "Kern 770-60 Kern & Sohngnh (max 60 g d 0.00001)".

Al termine del periodo di campionamento (24 ore), i filtri sono stati nuovamente condizionati e pesati per determinare, per differenza di peso, la quantità di PM_{10} raccolta.

Successivamente i 5 filtri relativi a ciascuna centralina sono stati unificati a formare un unico campione, frammentati ed estratti in diclorometano (mediante sonicazione e soxhlet) per lo svolgimento della caratterizzazione biologica.

Tutti gli eluati ottenuti sono stati mandati a secco con evaporatore rotante sottovuoto e risospesi in idonee quantità di Dimetilsolfossido (DMSO).

6. ANALISI BIOLOGICHE: TEST DI MUTAGENESI (SALMONELLA/MICROSOME ASSAY)

Questo test è uno dei più utilizzati per gli studi di mutagenesi ambientale in particolare per uno screening iniziale dei campioni. I principali motivi che ne giustificano l'utilizzo sono la relativa semplicità e rapidità di esecuzione ed il discreto valore predittivo nei confronti della potenziale cancerogenicità di singoli composti o di miscele complesse.

Il test di Ames utilizza ceppi di *Salmonella typhimurium* modificati a livello dell'operone dell'istidina, in modo da renderli auxotrofi per questo amminoacido. I ceppi così modificati non sono in grado di crescere in un terreno privo di questo amminoacido e possono fungere da marker dell'attività mutagena in quanto, se sottoposti ad un agente mutageno, riprendono la loro primitiva funzionalità, crescendo anche quando l'amminoacido non è disponibile.

Il principio sul quale si fonda questo metodo è, perciò, il fenomeno della **retromutazione** dei batteri esposti all'azione di una sostanza mutagena, dalla condizione di auxotrofia a quella di prototrofia per l'istidina (istidina-dipendenza).

Secondo quanto riportato in letteratura, per lo studio della mutagenicità del particolato e di campioni di suolo, sono stati utilizzati, nel corso del presente lavoro, per la loro maggiore sensibilità ai mutageni presenti in questa matrice, i ceppi TA98 e TA100 che presentano le seguenti caratteristiche: il ceppo TA 98 evidenzia mutageni con azione di frameshift che provocano lo slittamento del modulo di lettura del codice genetico, mentre il ceppo TA 100 evidenzia mutageni che provocano una sostituzione di base che inducono una lettura scorretta del codice genetico.

Poiché alcuni contaminanti ambientali non sono mutageni diretti ma lo diventano a seguito delle trasformazioni e attivazioni metaboliche che avvengono nell'organismo, al fine di studiare tale effetto genotossico, viene utilizzata durante lo svolgimento del test una frazione microsomiale di fegato di ratto (S9). L'utilizzazione dell'S9 permette, quindi, di evidenziare quelle sostanze mutagene definite indirette.

Il test è stato eseguito impiegando capsule Petri contenenti terreno minimo sul quale è stata piastrata un'aliquota di terreno liquido contenente una quantità limitata di istidina e biotina, una sospensione di *Salmonella typhimurium*, il campione da saggiare alle diverse dosi e, nel caso di utilizzo dell'attivazione metabolica, dell'S9 mix al 10%. Ogni campione è stato saggiato a **dosi** diverse in triplicato.

Le piastre sono state, quindi, incubate per 48 ore a 37°C.

Al termine del periodo di incubazione, si ottiene una crescita base dei batteri legata alla quantità limitata di istidina presente nel terreno a cui si sovrappongono le colonie di revertenti (istidina-indipendenti).

In particolare, si ha un numero di colonie di revertenti di base costante, diverso per ogni ceppo, dovuto alla retromutazione spontanea dei batteri e si assiste ad un aumento del numero di colonie di revertenti proporzionale alla concentrazione e alla potenzialità mutagena del campione testato.

In ogni saggio eseguito con il test di Ames deve essere compiuto un **controllo negativo** (revertenti spontanei) ed un **controllo positivo** con mutageni standard (2-nitrofluorene, sodio azide e 2-aminofluorene) per controllare il funzionamento dei ceppi.

Per ogni campione esaminato è stato calcolato il valore di mutagenicità ad ogni singola dose eseguendo la media matematica delle 3 prove effettuate.

Nel caso della mutagenicità dell'aria, infatti, i risultati vengono espressi convenzionalmente sia come **potenza mutagena specifica**, e cioè il numero di eventi mutageni per unità di peso di estratto organico (μg), oppure come **attività mutagena unitaria**, e cioè il numero di eventi mutageni ottenuti per unità di volume di aria a cui si riferisce l'estratto saggiato (litri o metri cubi).

Questa modalità di espressione dei risultati consente un confronto qualitativo tra tutti i campioni esaminati dal momento che l'attività biologica può dipendere, non solo dalla qualità delle polveri intesa come l'effetto indotto dalle diverse sostanze adsorbite ma anche dalla concentrazione delle polveri presenti in un metro cubo di aria, tenendo conto che un essere umano inala circa 20 m³ di aria al giorno.

Le concentrazioni analizzate nel test di mutagenesi sono state le seguenti:

Cabina A

- □ 1.5 mg/piastra 35.64 m³/piastra
- □ 1 mg/piastra 23.76 m³/piastra
- □ 0.5 mg/piastra 11.88 m³/piastra
- □ 0.15 mg/piastra 3.56m³/piastra
- □ 0.1 mg/piastra 2.38 m³/piastra
- □ 0.05 mg/piastra 1.19 m³/piastra

Lotto 5

- □ 1.5 mg/piastra −30.41 m³/piastra
- □ 1 mg/piastra 20.47 m³/piastra
- □ 0.5 mg/piastra 10.23 m³/piastra
- □ 0.15 mg/piastra 3.041 m³/piastra
- □ 0.1 mg/piastra 2.047 m³/piastra
- □ 0.05 mg/piastra 1.023 m³/piastra

Sulla base di quanto riportato nel "Bacterial Reverse Mutation Test. OECD Guidelines for the Testing of Chemicals Section 4 Health Effects, Test No. 471 – 1997" per stabilire la positività (mutagenicità) dei campioni si applica il criterio del raddoppio, cioè un campione si considera positivo quando in due dosi consecutive, oppure la più alta dose che non ha evidenziato tossicità, il rapporto tra il numero dei revertenti indotti e il numero dei revertenti spontanei (controllo negativo) è \geq 2 e quando almeno due di queste dosi consecutive hanno mostrato una relazione dose-risposta lineare. (Chu KL et al 1981).

Per l'analisi quantitativa sono stati considerati sia i campioni positivi (rapporto trattato/controllo \geq 2) che quelli che presentano rette di regressione con $R^2 \geq 0.75$, da cui sono stati ricavati i valori dei revertenti/ m^3 di aria aspirata equivalenti (e quindi il valore dei revertenti/ μg di particolato), rappresentati dai coefficienti angolari delle rispettive rette di regressione lineare, considerando solo il tratto lineare della curva dose/risposta al fine di eliminare l'interferenza dovuta all'eventuale presenza di effetto tossico o di altri effetti inibenti.

7. ANALISI CHIMICHE

Sulla frazione PM₁₀ del particolato atmosferico sono state anche effettuate indagini chimiche qualitative prendendo in esame gli Idrocarburi Policiclici Aromatici e la componente metallica. Le analisi sono state eseguite da Eurolab srl ed in allegato vengono riportati i rapporti di prova.

8. RISULTATI delle analisi eseguite sul particolato atmosferico

8.1 Analisi gravimetrica del PM₁₀

Nelle tabelle 3 e 4 sono riassunti i risultati relativi alle concentrazioni di particolato PM₁₀ ottenuti nel corso della campagna di monitoraggio nelle due postazioni esaminate e con le due tipologie di campionatori. In particolare, vengono riportati i risultati ottenuti per ogni singola giornata di prelievo al fine di poter effettuare confronti con i limiti normativi nonostante, come descritto nel paragrafo 5, i filtri siano stati successivamente unificati per l'esecuzione delle valutazioni chimiche e biologiche. L'analisi dei risultati deve tenere conto delle differenze temporali di esecuzione dei rilievi (dalle ore 00.00 alle 24.00 dello stesso giorno per i campionatori a basso volume e 24 h complessive a cavallo di due giorni per i campionatori ad alto volume) tra i due campionatori la cui finalità di utilizzo è differente.

Tabella 3: concentrazione di PM₁₀ rilevate presso la cabina A

CABINA A - Data di prelievo	A A - Data di prelievo Campionatore alto volume - concentrazione PM ₁₀ µg/m³	
01/02/2021 - 02/02/2021	32	
02/02/2021- 03/02/2021	51	50 μg/m³
03/02/2021 -04/02/2021	51	(da non superare più di 35
04/02/2021- 05/02/2021	51	volte per anno)
05/02/2021-06/02/2021	25	

CABINA A - Data di prelievo	Campionatore sequenziale concentrazione PM ₁₀ µg/m³	Valore limite giornaliero D.lgs 155/2010
02/02/2021	56	
03/02/2021	48	
04/02/2021	41	50 μg/m³
05/02/2021	39	(da non superare più di 35
06/02/2021	29	volte per anno)
07/02/2021	30	
08/02/2021	44	

Tabella 4: concentrazione di PM₁₀ rilevate presso il lotto 5

rabella 4. concentrazione di i Wig filevate presso il lotto 5									
CABINA B - Data di prelievo	Campionatore alto volume - concentrazione PM ₁₀ µg/m³	Valore limite giornaliero D.lgs 155/2010							
01/02/2021 - 02/02/2021	32								
02/02/2021- 03/02/2021	58	50 μg/m³							
03/02/2021 -04/02/2021	52	(da non superare più di 35							
04/02/2021- 05/02/2021	43	volte per anno)							
05/02/2021-06/02/2021	37								

_			
	LOTTO 5 - Data di prelievo	Campionatore sequenziale concentrazione PM ₁₀ µg/m³	Valore limite giornaliero D.lgs 155/2010
	02/02/2021	63	
	03/02/2021	51	7
	04/02/2021	39	50 μg/m³
	05/02/2021	35	(da non superare più di 35
	06/02/2021	7.8	volte per anno)
	07/02/2021	36	
	08/02/2021	65	

Dall'analisi dei risultati ottenuti è necessario effettuare alcune considerazioni in riferimento:

- alla conformità delle concentrazioni di PM₁₀ con i valori limite previsti dalla normativa per questo parametro
- alla distribuzione del PM₁₀ nel sito oggetto di indagine

Se si effettua un confronto delle concentrazioni di PM_{10} rilevate con i limiti legislativi previsti dal D.lgs. n. 155/10 e s.m.i. a tutela della protezione della salute umana, ed in particolare con i limiti sulla concentrazione media annuale (pari a 40 μ g/m³) e sulla concentrazione media giornaliera (pari a 50 μ g/m³):

- le concentrazioni rilevate presso la cabina A durante il periodo di monitoraggio hanno evidenziato superamenti del valore limite giornaliero. Il valore medio dei monitoraggi con il campionatore ad alto volume è pari a 42 μg/m³ mentre il valore medio dei monitoraggi con il campionatore sequenziale è pari a 41 μg/m³
- anche le concentrazioni rilevate presso il lotto 5 hanno evidenziato superamenti del valore limite giornaliero con entrambe i sistemi. Il valore medio dei monitoraggi con il campionatore ad alto volume è pari a 44.4 μg/m³ mentre il valoree medio dei monitoraggi con il campionatore sequenziale è pari a 42.4 μg/m³

I valori registrati con il campionatore ad alto volume sono stati paragonati con quanto rilevato nel corso dei precedenti monitoraggi invernali ed estivi per le postazioni di prelievo indagate al fine di comprendere meglio la distribuzione spaziale e temporale del parametro polveri nel sito (tabelle 5 e 6). Evidenziati in verde sono riportati i vari rilevati nel mese di aprile 2020 durante l'emergenza sanitaria da Covid.

Tabella 5: concentrazione di PM₁₀ rilevate presso la cabina A (in inverno e in estate)

INVERNO 2017	PM ₁₀ μg/m³	INVERNO 2018	PM ₁₀ μg/m³	INVERNO 2019	PM ₁₀ μg/m³	APRILE 2020	PM ₁₀ μg/m³	INVERNO 2021	PM ₁₀ μg/m³
16/01/2017 –		22/01/2018		21/01/2019		14/04/2020		01/02/2021	
17/01/2017	38	_	51.4	-	54.4	_	24.09	_	32
17/01/2017		23/01/2018		22/01/2019		15/04/2020		02/02/2021	
17/01/2017 –		23/01/2018		22/01/2019		15/04/2020		02/02/2021-	
18/01/2017	45,5	_	62.2	_	62.6	_	28.73	03/02/2021	51
10/01/2017		24/01/2018		23/01/2019		16/04/2020		03/02/2021	
18/01/2017 –		24/01/2018		23/01/2019		16/04/2020		03/02/2021	
19/01/2017 –	65,9	_	96.9	-	41.6	-	30.16	, ,	51
19/01/2017		25/01/2018		24/01/2019		17/04/2020		-04/02/2021	
19/01/2017 –		25/01/2018		24/01/2019		17/04/2020		04/02/2021-	
	83,2	_	81.2		48.1	-	28.57		51
20/01/2017		26/01/2018		25/01/2019		18/04/2020		05/02/2021	
20/01/2017		29/01/2018		28/01/2019		18/04/2020		05/02/2024	
20/01/2017 -	73	_	49.4	_	75.1	_	29.47	05/02/2021-	25
21/01/2017		30/01/2018		29/01/2019		19/04/2020		06/02/2021	į į
VALORE MEDIO	61.12		68.2		56.4		28.20		42

ESTATE 2017	PM ₁₀ μg/m³	ESTATE 2018	PM ₁₀ μg/m³	ESTATE 2019	PM ₁₀ μg/m³	ESTATE 2020	PM ₁₀ μg/m³
03/07/2017 – 04/07/2017	21,2	06/08/2018 - 07/08/2018	23.5	30/07/2019 – 31/07/2019	27.6	04/08/2020 – 05/08/2020	17.32
04/07/2017 – 05/07/2017	34,1	07/08/2018 - 08/08/2018	18.4	31/07/2019 – 01/08/2019	34.8	05/08/2020 – 06/08/2020	43.55
05/07/2017 – 06/07/2017	51,4	08/08/2018 - 09/08/2018	18.8	01/08/2019 – 02/08/2019	30.1	06/08/2020 – 07/08/2020	28.37
06/07/2017 – 07/07/2017	43,0	09/08/2018 - 10/08/2018	16.3	05/08/2019 – 06/08/2019	39.4	07/08/2020 – 08/08/2020	25.20
07/07/2017 – 08/07/2017	48,9	10/08/2018 - 11/08/2018	20.2	06/08/2019 – 07/08/2019	30.9	10/08/2020 – 11/08/2020	31.96
VALORE MEDIO	39.72		19.4		32.6		29.28

Tabella 6: concentrazione di PM₁₀ rilevate presso il lotto 5 (in inverno e in estate)

INVERNO 2019	PM ₁₀ μg/m ³	APRILE 2020	PM ₁₀ μg/m ³	INVERNO 2021	PM ₁₀ μg/m³
04/02/2019 -	76.9	14/04/2020 -	69.44	01/02/2021 -	32
05/02/2019	70.9	15/04/2020	05.44	02/02/2021	32
05/02/2019 -	27.9	15/04/2020 -	37.08	02/02/2021-	58
06/02/2019	27.9	16/04/2020	37.08	03/02/2021	36
06/02/2019 -	131.8	16/04/2020 -	36.86	03/02/2021 -	52
07/02/2019	151.0	17/04/2020	30.60	04/02/2021	32
07/02/2019 -	104.7	17/04/2020 -	37.47	04/02/2021-	43
08/02/2019	104.7	18/04/2020	37.47	05/02/2021	45
08/02/2019 -	81.2	18/04/2020-	31.41	05/02/2021-	37
09/02/2019	01.2	19/04/2020	51.41	06/02/2021	5/
VALORE MEDIO	84.5		42.45		41

ESTATE 2018	PM ₁₀ μg/m ³	ESTATE 2019	PM ₁₀ μg/m³	ESTATE 2020	PM ₁₀ μg/m³
23/07/2018 -	19.5	22/07/2019 –	54.3	04/08/2020 -	26.71
24/07/2018	19.5	23/07/2019	54.5	05/08/2020	20.71
24/07/2018 -	25.8	23/07/2019 -	59.8	05/08/2020 -	29.13
25/07/2018	25.8	24/07/2019	59.8	06/08/2020	29.13
25/07/2018 -	30.5	24/07/2019 -	54.5	06/08/2020 -	33.62
26/07/2018	30.5	25/07/2019	34.3	07/08/2020	33.02
30/07/2018 -	3.6	25/07/2019 -	42.5	07/08/2020 -	35.47
31/07/2018	3.0	26/07/2019	42.5	08/08/2020	35.47
		29/07/2019 -	24.3	10/08/2020 -	27.83
		30/07/2019	24.3	11/08/2020	27.83
VALORE MEDIO	19.8		47.1		30.55

L'analisi dei risultati consente di osservare che:

- Come già riportato nelle relazioni precedenti, i valori registrati nel corso dei monitoraggi descrivono in modo evidente il tipico andamento stagionale del parametro "polveri" caratterizzato da valori più alti nei mesi invernali rispetto ai mesi estivi. Ciò è maggiormente evidente per la cabina A a dimostrazione del fatto che questa postazione di prelievo, essendo dislocata al confine della discarica in prossimità della tangenziale, risente principalmente del contributo delle emissioni autoveicolari (processi di combustione) piuttosto che delle attività proprie della discarica stessa e del passaggio di mezzi di cantiere
- A conferma di ciò, la postazione della Cabina A è quella che ha risentito maggiormente degli effetti delle misure di contenimento messe in atto durante l'emergenza sanitaria da Covid-19 dal momento che le concentrazioni di PM₁₀ rilevate nel mese di aprile 2020 sono decisamente più contenute se paragonate a quanto rilevato nei monitoraggi invernali del triennio 2015-2017 e in linea (se non più basse) con quanto registrato nei mesi estivi.

• La postazione di prelievo in prossimità del lotto 5 rimane maggiormente influenzata dalle attività della discarica e quindi dalla movimentazione di mezzi di cantiere e di trasporto rifiuti da smaltire.

Al fine di valutare <u>la distribuzione del particolato atmosferico nel territorio oggetto di indagine,</u> <u>di</u> seguito si riportano i dati gravimetrici rilevati sul territorio in esame dal Sistema Regionale di Rilevamento della qualità dell'aria registrati negli stessi giorni di prelievo presso postazioni di misura dislocate sul territorio rappresentative di zone urbane e suburbane e quindi caratterizzate da diverse condizioni di traffico autoveicolare.

Per ciascuna centralina, oltre ai dati giornalieri, vengono riportati anche i valori registrati dai campionatori sequenziali posizionati presso le due postazioni di monitoraggio in discarica.

Tabella 7: Torino - Via della Consolata

Data	Valore – PM ₁₀ μg/m ³	CABINA A - PM ₁₀	LOTTO 5 - PM ₁₀ μg/m ³
Data	Valore – Pivi ₁₀ μg/III ^s	μg/m ³	LOTTO 3 - PIVI10 μg/III*
01/02/2021	34		
02/02/2021	55	56	63
03/02/2021	56	48	51
04/02/2021	45	41	39
05/02/2021	35	39	35
06/02/2021	34	29	7.8
07/02/2021	9	30	36
08/02/2021	29	44	65
09/02/2021	40		
10/02/2021	38		

Tabella 8 Torino – Lingotto

Data	Valore – PM ₁₀ μg/m ³	CABINA A - PM ₁₀	LOTTO 5 - PM ₁₀ μg/m ³
		μg/m³	
01/02/2021	24		
02/02/2021	48	56	63
03/02/2021	55	48	51
04/02/2021	48	41	39
05/02/2021	31	39	35
06/02/2021	29	29	7.8
07/02/2021	7	30	36
08/02/2021	/	44	65
09/02/2021	30		
10/02/2021	31		

Tabella 9: Torino – Via Rubino

Tabella 5: Totillo Via Rabillo					
Data	Valore – PM ₁₀ μg/m ³	CABINA A - PM ₁₀ μg/m ³	LOTTO 5 - PM ₁₀ μg/m ³		
01/02/2021	24				
02/02/2021	63	56	63		
03/02/2021	61	48	51		
04/02/2021	52	41	39		
5/02/2021	31	39	35		
06/02/2021	31	29	7.8		

07/02/2021	7	30	36
08/02/2021	21	44	65
09/02/2021	/		
10/02/2021	/		

Tabella 10 Torino – Via Grassi

Data	Valore – PM ₁₀ μg/m ³	CABINA A - PM ₁₀ μg/m ³	LOTTO 5 - PM ₁₀ μg/m ³
01/02/2021	49		
02/02/2021	52	56	63
03/02/2021	64	48	51
04/02/2021	53	41	39
5/02/2021	46	39	35
06/02/2021	40	29	7.8
07/02/2021	10	30	36
08/02/2021	36	44	65
09/02/2021	55		
10/02/2021	46		

Tabella 11 Beinasco – TRM

Data	Valore – PM ₁₀ μg/m ³	CABINA A - PM ₁₀	LOTTO 5 - PM ₁₀ μg/m ³
Data	Valore – Pivi10 μg/III	μg/m ³	LOTTO 5 - PIVI10 μg/III
01/02/2021	19		
02/02/2021	41	56	63
03/02/2021	53	48	51
04/02/2021	45	41	39
5/02/2021	31	39	35
06/02/2021	28	29	7.8
07/02/2021	7	30	36
08/02/2021	18	44	65
09/02/2021	33		
10/02/2021	30		

Tabella 12 Collegno – corso Francia

Tubella II collegilo collo i fullica					
Data	Valore – PM ₁₀ μg/m ³	CABINA A - PM ₁₀	LOTTO 5 - PM ₁₀ μg/m ³		
		μg/m³			
01/02/2021	35				
02/02/2021	46	56	63		
03/02/2021	58	48	51		
04/02/2021	47	41	39		
5/02/2021	36	39	35		
06/02/2021	34	29	7.8		
07/02/2021	7	30	36		
08/02/2021	28	44	65		
09/02/2021	43	_			
10/02/2021	33				

Tabella 13: Druento – La Mandria

Data	Valore – PM ₁₀ μg/m ³	CABINA A - PM ₁₀ µg/m ³	LOTTO 5 - PM ₁₀ μg/m ³
01/02/2021	13		
02/02/2021	28	56	63
03/02/2021	44	48	51
04/02/2021	35	41	39
5/02/2021	30	39	35
06/02/2021	25	29	7.8
07/02/2021	5	30	36
08/02/2021	13	44	65
09/02/2021	17		
10/02/2021	10		

Tabella 14: Settimo - Via Vivaldi

Data	Valore – PM ₁₀ μg/m ³	CABINA A - PM ₁₀	LOTTO 5 - PM ₁₀ µg/m ³
Dutu	ναιοτε τινιίο μβ/ π	μg/m³	20110 3 111110 μg/
01/02/2021	35		
02/02/2021	/	56	63
03/02/2021	/	48	51
04/02/2021	/	41	39
5/02/2021	35	39	35
06/02/2021	39	29	7.8
07/02/2021	11	30	36
08/02/2021	29	44	65
09/02/2021	40		
10/02/2021	38		

Dall'analisi di questi dati è possibile osservare, nello stesso periodo temporale, una coerenza dei risultati ottenuti presso la cabina A della discarica con entrambe le modalità di prelievo con le concentrazioni medie di PM_{10} registrate dalla rete regionale (range 29-56 $\mu g/m^3$ con il campionatore sequenziale e 25-51 $\mu g/m^3$ con il campionatore alto volume), a dimostrazione e conferma che la <u>distribuzione</u> di questo parametro nel territorio urbano/suburbano risulterebbe <u>omogenea</u>. I valori medi più elevati riscontrati presso il lotto 5 sono pertanto ragionevolmente da attribuire alle attività proprie della discarica.

8.2 Analisi delle potenzialità genotossiche – particolato atmosferico PM₁₀

Le tabelle seguenti (tab. 15 - 16) riportano, come richiesto dal metodo riportato, i valori medi dei revertenti ottenuti nel test considerando le 3 repliche effettuate per ogni diluizione del campione. In rosso vengono evidenziati i risultati per i quali è stato ottenuto il raddoppio dei revertenti rispetto al controllo negativo (spontanee).

Tabella 15: Centralina A

TA 98 - S9	Medie revertenti ±deviazione standard	TA 100 - S9	Medie revertenti ±deviazione standard
Spontanee	19 ± 26	Spontanee	134 ± 8
2NF	913± 42	SA	899 ± 15
1.5 mg/piastra	Tossicità	1.5 mg/piastra	tossicità
1 mg/piastra	tossicità	1 mg/piastra	246 ± 19
0.5 mg/piastra	52 ± 4	0.5 mg/piastra	$\textbf{207} \pm \textbf{11}$
0.15 mg/piastra	41 ± 10	0.15 mg/piastra	175 ± 14
0.1 mg/piastra	29 ± 7	0.1 mg/piastra	167 ± 15
0.05 mg/piastra	29 ± 4	0.05 mg/piastra	136 ± 26
TA 98 + S9	Medie revertenti ±deviazione standard	TA 100 + S9	Medie revertenti ±deviazione standard
Spontanee	25± 5	Spontanee	155 ± 24
2AF	2426± 205	2AF	2206 ± 211
1.5 mg/piastra	Tossicità	1.5 mg/piastra	146 ± 13
1 mg/piastra	56 ± 2	1 mg/piastra	169 ± 12
0.5 mg/piastra	36 ± 4	0.5 mg/piastra	134 ± 7
0.15 mg/piastra	27 ±31	0.15 mg/piastra	132 ± 17
0.1 mg/piastra	27 ± 5	0.1 mg/piastra	166 ± 16
0.05 mg/piastra	24 ± 4	0.05 mg/piastra	151 ± 23

Tabella 16: Lotto 5

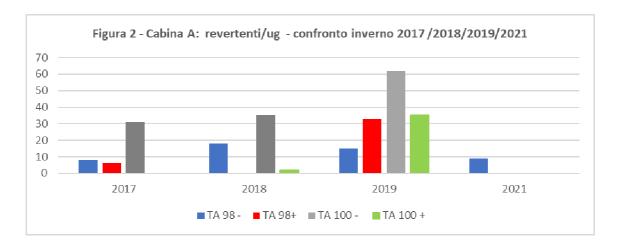
TA 98 - S9	Medie revertenti ±deviazione standard	TA 100 - S9	Medie revertenti ±deviazione standard
Spontanee	19 ± 26	Spontanee	134 ± 8
2NF	913± 42	SA	899 ± 15
1.5 mg/piastra	56 ± 2	1.5 mg/piastra	241 ± 13
1 mg/piastra	42 ± 3	1 mg/piastra	253 ± 8
0.5 mg/piastra	44 ± 3	0.5 mg/piastra	$\textbf{217} \pm \textbf{12}$
0.15 mg/piastra	38 ± 6	0.15 mg/piastra	189 ± 17
0.1 mg/piastra	26 ± 1	0.1 mg/piastra	180 ± 10
0.05 mg/piastra	22 ± 3	0.05 mg/piastra	128 ± 9
TA 98 + S9	Medie revertenti ±deviazione standard	TA 100 + S9	Medie revertenti ±deviazione standard
Spontanee	25± 5	Spontanee	155 ± 24
2AF	2426± 205	2AF	2206 ± 211
1.5 mg/piastra	66 ± 6	1.5 mg/piastra	173 ± 15
1 mg/piastra	52 ± 6	1 mg/piastra	171 ± 17
0.5 mg/piastra	43 ± 3	0.5 mg/piastra	173 ± 9
0.15 mg/piastra	48 ± 8	0.15 mg/piastra	160 ± 12
0.1 mg/piastra	42 ± 7	0.1 mg/piastra	143 ± 5
0.05 mg/piastra	29 ± 8	0.05 mg/piastra	$\textbf{157} \pm \textbf{12}$

Da una prima analisi dei risultati è possibile mettere in evidenza che, come avvenuto nei campioni relativi ai monitoraggi invernali degli anni precedenti:

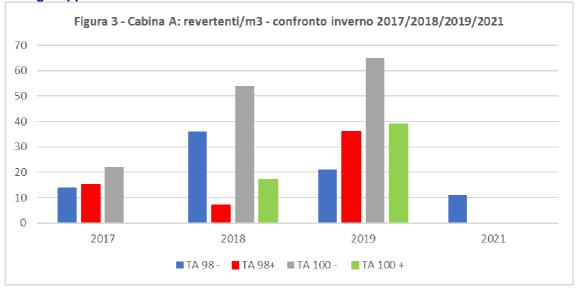
 Il ceppo TA98 ha evidenziato risposte positive (rapporto trattato/controllo ≥ 2) a carico sia della centralina A sia del lotto 5 in assenza ed in presenza di attivazione metabolica. Questi risultati possono far presupporre che la mutagenicità rilevata possa essere ascritta a mutageni che agiscono sul DNA in modo diretto con azione frameshift (per inserzione o delezione di basi)

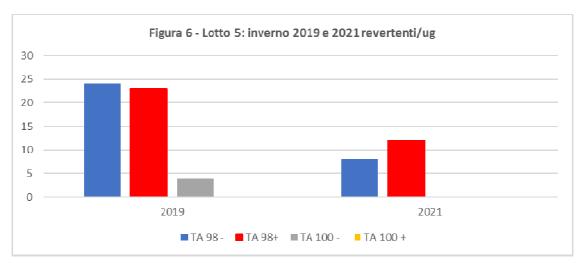
• Oltretutto la **centralina A** ha evidenziato, inoltre, fenomeni tossici alle dosi più alte sia in assenza che in presenza di attivazione metabolica

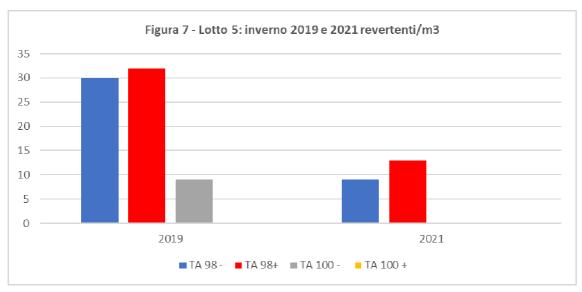
Come descritto nel paragrafo 6, la valutazione dell'attività mutagena è stata anche espressa sia in termini di **potenza mutagena specifica**, ovvero analizzando il numero di eventi mutageni per unità di peso di estratto organico (revertenti/ μ g), sia come **attività mutagena unitaria**, ovvero analizzando il numero di eventi mutageni ottenuti per unità di volume di aria a cui si riferisce l'estratto saggiato (litri o metri cubi). Queste modalità di espressione dei risultati consentono un confronto qualitativo tra tutti i campioni esaminati dal momento che l'attività biologica può dipendere, non solo dalla qualità delle polveri intesa come l'effetto indotto dalle diverse sostanze adsorbite ma anche dalla concentrazione delle polveri presenti in un metro cubo di aria.


Nella tabella 17 vengono riportati per i campioni analizzati i valori dei revertenti/m³ di aria aspirata equivalenti e revertenti/µg di particolato per ciascun ceppo:

campions	R	evertenti ind	otti/m³ di	aria	Revertenti indotti/µg di particolato			
campione	TA 98	TA98 +S9	TA100	TA 100 +S9	TA 98	TA98 +S9	TA100	TA 100 +S9
Cabina A	11	/	/	/	9	/	/	/
Lotto 5	9	13	/	/	8	12	/	/


Tabella 17: Revertenti indotti per m³ di aria e per mg di particolato nei ceppi TA98 e TA100 di Salmonella Typhimurium, in presenza ed in assenza di attivazione metabolica


Se si osservano i risultati anche secondo questa modalità di espressione risulta evidente che tutti e due i campioni inducono attività biologica evidente sia in termini di revertenti indotti per microgrammo di particolato atmosferico sia se si considera il riferimento ai m³ di aria aspirata equivalenti.


Le figure seguenti (2-5) mostrano il confronto tra i valori dei revertenti/m³ di aria aspirata equivalenti e revertenti/µg di particolato ottenuti per le varie postazioni (cabina A, cabina B e lotto 5) nelle campagne invernali finora eseguite (2017/2018/2019/2021).

Dall'osservazione delle figure si possono effettuare le seguenti considerazioni in merito alla risposta biologica rilevata:

- Un dato che accomuna tutti i campioni è la costante risposta del ceppo TA98 in assenza di attivazione metabolica e questo risultato è in accordo con quanto riportato in letteratura in merito agli studi relativi alle proprietà mutagene del particolato atmosferico che evidenziano una risposta biologica più marcata senza attivazione metabolica e quindi una prevalenza di mutageni diretti, quali ad esempio gli Idrocarburi Policiclici Aromatici ed i diversi nitro e amino derivati.
- Risulta evidente la costante risposta ottenuta nel corso del monitoraggio invernale a carico della cabina A, in modo particolare con il ceppo TA98 ma anche con il ceppo TA100. Dal momento che i valori medi di PM₁₀ invernale registrati negli anni sono sempre risultati omogenei e costanti tra loro questi dati confermano ulteriormente che la sola valutazione ponderale delle polveri NON è sufficiente per fornire indicazioni sulla "pericolosità" ad esse associata. Concentrazioni costanti di particolato atmosferico possono essere infatti caratterizzate da effetti biologici differenti indotti dalla sua "composizione" ovvero dalle sostanze adsorbite sulla sua superficie.
- Analoga considerazione non si può fare per il lotto 5 non disponendo di dati numericamente significativi

8.3 Analisi chimiche – Ricerca di Idrocarburi Policiclici Aromatici

A supporto delle valutazioni biologiche, sono state eseguite analisi chimiche di approfondimento che hanno riguardato la valutazione della categoria degli Idrocarburi Policiclici Aromatici legati alla frazione del Particolato atmosferico.

La decisione di ricercare questi composti organici è legata al fatto che essi rappresentano degli utili indicatori in quanto derivanti da processi di combustione incompleta di materiale organico contenente carbonio, come carbone, legno, prodotti petroliferi e rifiuti. La loro presenza in atmosfera è dovuta soprattutto alle molteplici sorgenti di emissione antropiche, come la combustione di biomasse, carbone, oli, gas, il traffico autoveicolare, marittimo ed aereo, l'incenerimento dei rifiuti, numerosi processi industriali, la produzione e stesura di asfalti, ecc. Gli IPA ad alto peso molecolare, come il benzo[e]pirene e il benzo[a]pirene, sono presenti in elevate quantità in catrami, bitumi, pece, carboni e prodotti correlati come gli asfalti. Inoltre, possono derivare da nerofumo e fuliggine di legna o comunque si ricollegano a fonti pirogeniche. Sorgenti naturali sono i vulcani e gli incendi boschivi.

In atmosfera gli IPA sono presenti sia in fase gassosa che condensati sul particolato atmosferico; tuttavia, i composti più pesanti, costituiti da 4 o più anelli, si trovano principalmente adsorbiti su particelle, specialmente sulle frazioni più fini, che hanno tempi di residenza più lunghi nell'atmosfera. Questo aspetto diventa significativo se si considera che gli IPA a più alto peso molecolare rappresentano anche quelli caratterizzati da un rilevante attività tossica, mutagena e cancerogena.

La valutazione dell'inquinamento da IPA in aria ambiente è disciplinata dal D. Lgs 155/2010 che prevede il valore obiettivo di 1 ng/m³ (media annua) per il solo benzo(a)pirene, cancerogeno certo, ritenuto indicatore dell'andamento di tutta la classe.

In riferimento a ciò, è necessario ricordare che si devono considerare anche altri IPA importanti per il loro profilo tossicologico. Nel 2010 la IARC (International Agency for Research on Cancer) ha pubblicato i risultati della revisione effettuata nell'ambito della categoria degli Idrocarburi Policiclici Aromatici (Vol. 92, suppl. 7 "Summaries and evaluations of evidence for carcinogenicity in humans and in experimental animals, and summaries of other relevant data, for agents for which there are data on carcinogenicity in humans") a seguito della quale ha classificato 16 IPA come cancerogeni dimostrati, probabili o possibili per l'essere umano:

- Il benzo(a)pirene è un cancerogeno per l'uomo (gruppo 1);
- Il dibenzo[a,h]antracene, ciclopenta(c,d)pirene ed il dibenzo[a,l]pirene sono **probabili** cancerogeni per l'uomo (gruppo 2A);
- Il benzo(a)antracene, benzo(b, j, k)fluorantene, il crisene, l'Indeno (1,2,3,c,d) pirene, dibenzo[a,h]pirene dibenzo[a,i]pirene, il naftalene, il metilcrisene, il benzo(j)aceantrilene, il benzo(c)fenantrene sono possibili cancerogeni per l'uomo (gruppo 2B).

Altri IPA quali Fenantrene, Antracene, Fluorantene, Pirene, fluorene, acenaftene, Benzo(ghi)perilene forniscono comunque utili indicazioni al fine di valutare l'apporto del contenuto totale di IPA in termini di attività biologica delle polveri: queste sostanze, infatti, pur non essendo state classificate come probabili o possibili cancerogeni dallo IARC hanno dimostrato di indurre mutagenicità in prove di laboratorio con il *Salmonella*/microsome assay con il ceppo di Salmonella TA98.

Gli idrocarburi policiclici aromatici (IPA) sono prodotti nei processi di combustione incompleta di materiali organici vengono e sono emessi in atmosfera quasi totalmente adsorbiti sul materiale particolato. Molti composti sono cancerogeni anche se l'evidenza di cancerogenicità sull'uomo relativa a singoli IPA, dato che in condizioni reali si verifica sempre una coesposizione simultanea a miscele complesse di molte decine di IPA, è estremamente difficile.

Sulla base di quanto sopra descritto, nella tabella 18 sono riportati i valori delle concentrazioni degli Idrocarburi Policiclici Aromatici riscontrati sulla frazione PM_{10} del particolato atmosferico in entrambe le postazioni. Per ciascuna postazione di prelievo sono indicate le concentrazioni rilevate per ogni composto nella settimana di prelievo in modo da poter uniformare il dato con quanto eseguito per le analisi biologiche (in cui è stato testato un campione derivante dall'unificazione dei 5 filtri campionati).

In modo particolare, sono indicati per ogni composto i valori espressi in ng/m³ di aria, nonché la sommatoria delle concentrazioni di tutti gli Idrocarburi ritrovati suddividendoli anche in IPA cancerogeni e non cancerogeni.

Tabella 18 – Concentrazioni di IPA (Idrocarburi Policiclici Aromatici) ritrovate sulle polveri PM₁₀ campionate (ng/m³ di aria).

		Centralina A	Lotto 5
Naftalene	ng/m³	0.023	0.023
Acenaftilene	ng/m3	0.053	0.053
Acenaftene	ng/m³	0.20	0.20
Fluorene	ng/m³	0.15	0.15
Fenantrene	ng/m³	0.44	0.44
Antracene	ng/m³	0.097	0.097
Fluorantene	ng/m³	0.34	0.34
Pirene	ng/m³	0.41	0.41
Benzo (a) antracene	ng/m³	0.54	0.54
Crisene	ng/m³	0.87	0.87
Benzo(b) - fluorantene	ng/m³	0.92	0.92
Benzo(K) - fluorantene	ng/m³	0.40	0.40
Benzo(j) - fluorantene	ng/m³	0.56	0.56
Benzo (e)pirene	ng/m³	0.88	0.88
Benzo (a)pirene	ng/m³	0.68	0.68
Perilene	ng/m³	0.18	0.18
Indeno (1,2,3,c,d) pirene	ng/m³	069	069
Dibenzo(a,h)antracene	ng/m³	0.19	0.19
Benzo(g,h,i)perilene	ng/m³	0.034	0.034
Dibenzo(a,l)pirene	ng/m³	0.042	0.042
Dibenzo(a,e)pirene	ng/m³	0.036	0.036
Dibenzo(a,i)pirene	ng/m³	0.017	0.017
Dibenzo(a,h)pirene	ng/m³	<0.001	<0.001
IPA TOTALI	ng/m³	7.752	7.752

Se si prende in esame il valore del benzo(a)pirene, ritenuto indicatore dell'andamento di tutta la classe degli IPA e unico disciplinato dal punto di vista normativo, risulta evidente la conformità rispetto al limite normativo di 1 ng/m³ oltretutto ricordando che tale valore si riferisce alla media annua ed i valori registrati nei monitoraggi si riferiscono ad un campione derivante dall'unificazione dei 5 filtri campionati.

I valori invernali ottenuti risultano comunque in accordo con quanto viene registrato sulla frazione PM_{10} delle polveri campionate nelle varie stazioni di rilevamento della qualità dell'aria distribuite sul territorio.

Dall'analisi complessiva dei risultati è possibile osservare che le concentrazioni degli IPA rilevate nella centralina A sono superiori rispetto a quanto registrato nel lotto 5.

I valori rilevati sono coerenti con quanto registrato nel corso dei monitoraggi invernali precedenti dal momento che si tratta di un parametro fortemente dipendente dalle condizioni meteo climatiche con valori decisamente più contenuti nei mesi estivi rispetto ai mesi invernali. Ciò è dovuto al contributo di diversi fattori quali: condizioni meteorologiche che in estate favoriscono la dispersione degli inquinanti (venti più intensi, acquazzoni che dilavano l'atmosfera, assenza di inversione termica), una maggiore insolazione in grado di attivare la degradazione degli IPA ed una diminuzione delle sorgenti presenti sul territorio (assenza di riscaldamento e un uso meno intensivo dell'auto).

A conferma di quanto scritto, nella tabella 19 vengono riportate le concentrazioni di IPA Totali rilevate nelle varie postazioni di campionamento durante i monitoraggi eseguiti nel periodo 2017-2021

IPA TOTALI ng/m ³	Centralina A	Centralina B	Lotto 5
Inverno 2017	23.51	18.87	
Estate 2017	0.713	0.38	
Inverno 2018	19.57	16.83	
Estate 2018	0.49		0.33
Inverno 2019	18.17		22.15
Estate 2019	0.55		0.40
Aprile 2020 (emergenza Covid)	1.39		1.37
Estate 2020	1.41		1.37
Inverno 2021	7.75		4.96

Tabella 19

Come già effettuato nel corso dei precedenti monitoraggi, si è tentato di comprendere quale potessero essere le sorgenti emissive degli Idrocarburi Policiclici Aromatici ritrovati, utilizzando la stessa modalità di rielaborazione applicata per le campagne già eseguite.

In particolare, si è fatto riferimento a studi di letteratura¹ che hanno messo in evidenza che, attraverso il calcolo dei rapporti tra alcuni IPA, è possibile fare alcune ipotesi circa le possibili fonti emissive. In particolare, il profilo degli IPA derivanti da sorgenti petrogeniche (ovvero presenti nei combustibili fossili e non originati da processi di combustione) è caratterizzato dalla prevalente presenza di composti leggeri a 2 o 3 anelli aromatici mentre il profilo degli IPA derivanti da sorgenti pirogeniche (originati per combustione) è caratterizzato dalla prevalenza di composti con 4-5 anelli aromatici.

I valori caratteristici dei rapporti di IPA che consentono di distinguere la sorgente emissiva tra petrogenica, pirolitica (combustione di combustibili), combustione di legno, biomassa o carbone sono riportati nella tabella 20:

¹ 2014 5th International Conference of Environmental Science and Technology – IPCBEE Vol. 69 (2014) – M. Tobiszewski

[&]quot;Application of diagnostic ratios of PAHs to characterize the pollution emission sources

Tabella 20: rapporti caratteristici di IPA per specifiche sorgenti di emissione

Diagnostic ratio	Origine petrogenica	Combustione combustibili fossili	Combustione carbone, legno, biomasse
ANT/(ANT+PHE)	< 0.1	>0.1	-
FLA/(FLA+PYR)	< 0.4	0.4 - 0.5	>0.5
BaA/(BaA+CHR)	< 0.2	>0.35	0.2 – 0.35
IcdP/(IcdP + BghiP)	< 0.2	0.2 – 0.5	>0.5

ANT = antracene; BaA = benzo(a)antracene; BghiP = benzo(ghi)pirene; CHR = crisene; FLA = fluorantene; IcdP = indeno(cd)perilene; PHE = fenantrene; PYR = pyrene

Pur nella consapevolezza che i dati finora ottenuti sono numericamente poco rappresentativi e che si riferiscono ad un periodo di campionamento di 5 giorni (e non ai singoli dati giornalieri ottenuti nel periodo di monitoraggio), si è voluto tentare di applicare i rapporti descritti nella tabella 20 ai diversi campioni fino a questo momento oggetto di indagine.

Nelle tabelle 21 e 22 sono riassunti i risultati ottenuti mettendo a confronto le diverse campagne di monitoraggio:

Tabella 21: rapporti caratteristici di IPA per la centralina A

rabena 22. rapporti dalatteriotte al il 71 per la derittamia 71									
	Centralina A								
Diagnostic ratio	Inverno 2017	Estat e 2017	Inverno 2018	Estate 2018	Inverno 2019	Estate 2019	Aprile 2020 – emergenza Covid	Estate 2020	Inverno 2021
ANT/(ANT+PHE)	0.64	0.057	0.13	0.08	0.18	0.59	0.072	0.07	0.18
FLA/(FLA+PYR)	0.38	0.39	0.40	0.12	0.40	0.35	0.164	0.16	0.45
BaA/(BaA+CHR)	0.46	0.24	0.41	0.52	0.39	0.27	0.359	0.35	0.38
IcdP/(IcdP + BghiP)	0.48	0.37	0.47	0.07	0.53	0.32	0.478	0.47	0.96

Tabella 22: rapporti caratteristici di IPA per il lotto 5

rabella 22. rapporti caratteristici di il A per il lotto 3							
Lotto 5							
	Estate	Inverno	Estate	Aprile 2020	Estate	Inverno	
Diagnostic ratio	2018	2019	2019	_	2020	2021	
				emergenza			
				Covid			
ANT/(ANT+PHE)	0.09	0.16	0.12	0.067	0.065	0.18	
FLA/(FLA+PYR)	0.16	0.46	0.34	0.146	0.145	0.39	
BaA/(BaA+CHR)	0.51	0.38	0.26	0363	0.36	0.38	
IcdP/(IcdP + BghiP)	0.38	0.54	0.31	0.492	0.5	0.56	

L'analisi di questi rapporti evidenzia innanzitutto l'andamento stagionale già riscontrato con gli altri parametri descritti nella relazione ovvero con la valutazione ponderale del particolato atmosferico e con la risposta biologica registrata.

Analizzando la serie di dati, risulta interessante osservare che il rapporto il cui valore risulta più stabile nel tempo è il BaA/BaA+CHR con valori tipici dei processi di combustione (origine pirogenica).

8.4 Analisi chimiche - Ricerca di metalli

Nel corso della campagna di monitoraggio è stata, inoltre, presa in esame la componente metallica presente nei campioni di PM₁₀, con particolare attenzione agli analiti per i quali vengono previste deroghe nella composizione dell'eluato dei rifiuti ammessi allo smaltimento.

Nelle tabelle 23 e 24 sono riportati i valori delle concentrazioni dei metalli riscontrati sulla

Nelle tabelle 23 e 24 sono riportati i valori delle concentrazioni dei metalli riscontrati sulla frazione PM₁₀ del particolato atmosferico in entrambe le postazioni.

Per ciascuna postazione di prelievo sono indicate le concentrazioni espresse in ng/m³ di aria rilevate per ogni composto nelle diverse giornate di prelievo.

Per la postazione lotto 5 non sono disponibili i dati per un problema tecnico incorso ad un filtro per cui non è stato possibile destinare una frazione dello stesso alla determinazione della componente metallica.

Tabella 23 - Cabina A - Concentrazioni di metalli ritrovate sulle polveri PM₁₀ campionate (ng/m³ di aria).

		01/02/2021 -	02/02/2021 -	03/02/2021 -	04/02/2021 -	05/02/2021 -
A11	, 3	02/02/2021	03/02/2021	04/02/2021	05/02/2021	06/02/2021
Alluminio	ng/m³	< 1.60	< 1.60	< 1.6	< 0.16	392
Antimonio	ng/m3	0.410	0.245	0.270	0.04	0.364
Argento	ng/m³	0.0150	0.015	0.0177	0.0108	0.0203
Arsenico	ng/m³	0.210	0.214	0.224	0.217	0.19
Bario	ng/m³	< 0.16	< 0.16	< 0.16	126	894
Berillio	ng/m³	< 0.0063	< 0.0063	< 0.0063	< 0.0063	0.0068
Boro	ng/m³	< 3	<3	< 3	47	480
Cadmio	ng/m³	0.0419	0.155	0.144	0.08	0.0720
Cobalto	ng/m³	0.0916	0.0697	< 0.063	0.0635	0.085
Cromo	ng/m³	3.52	2.76	2.68	1.61	2.17
Ferro	ng/m³	382	307	344	342	372
Manganese	ng/m³	7.28	5.56	5.87	6.86	6.27
Mercurio	ng/m³	< 0.031	< 0.031	< 0.031	< 0.031	< 0.031
Molibdeno	ng/m³	0.604	0.505	0.572	0.643	0.510
Nichel	ng/m³	1.22	0.719	0.652	0.557	0.905
Piombo	ng/m³	2.83	5.45	3.77	2.18	2.07
Rame	ng/m³	22	24.3	37.4	18.8	26.5
Selenio	ng/m³	0.082	0.098	0.063	0.09	< 0.063
Stagno	ng/m³	3.58	2.99	3.17	4.45	2.85
Tallio	ng/m³	< 0.0063	< 0.0063	<0.0063	< 0.0063	0.0067
Tellurio	ng/m³	< 0.063	< 0.063	<0.063	< 0.063	< 0.063
Titanio	ng/m³	1.33	0.970	1.19	1.39	1.96
Vanadio	ng/m³	0.128	0.115	0.121	0.123	0.171
Zinco	ng/m³	< 0.3	< 0.3	< 0.3	75.70	584

Tabella 24 – Lotto 5 - Concentrazioni di metalli ritrovate sulle polveri PM₁₀ campionate (ng/m³ di aria).

		01/02/2021 - 02/02/2021	02/02/2021 - 03/02/2021	03/02/2021 - 04/02/2021	04/02/2021 - 05/02/2021
Alluminio	ng/m³	110	< 1.6	94	143
Antimonio	ng/m3	0.35	0.109	0.470	0.429
Argento	ng/m³	0.0373	0.0250	0.044	0.027
Arsenico	ng/m³	0.405	0.314	0.397	0.329
Bario	ng/m³	205	< 0.16	163	390
Berillio	ng/m³	< 0.0063	< 0.0063	< 0.0063	< 0.0063
Boro	ng/m³	170	< 3	140	270
Cadmio	ng/m³	3.29	2.96	4.39	2.24
Cobalto	ng/m³	0.202	0.117	0.207	0.122
Cromo	ng/m³	7.41	3.96	6.61	3.28
Ferro	ng/m³	405	235	344	297
Manganese	ng/m³	12.3	6.78	11.3	9.66
Mercurio	ng/m³	< 0.031	< 0.031	< 0.031	< 0.031
Molibdeno	ng/m³	0.669	0.391	0.641	0.631
Nichel	ng/m³	4.17	2.16	3.89	1.85
Piombo	ng/m³	12.7	13.2	15.9	10.3
Rame	ng/m³	26.9	56.6	28.1	19.1
Selenio	ng/m³	0.143	0.111	0.139	0.144
Stagno	ng/m³	4.12	2.48	3.66	4.64
Tallio	ng/m³	0.058	0.0093	0.0174	0.12
Tellurio	ng/m³	< 0.063	< 0.063	< 0.063	< 0.063
Titanio	ng/m³	3.83	2.3	3.84	2.69
Vanadio	ng/m³	0.263	0.166	0.28	0.198
Zinco	ng/m³	150	< 0.3	141	294.9

Da una prima osservazione dei dati, in entrambe le postazioni le concentrazioni rilevate sono in generale contenute ma risulta comunque evidente l'influenza della dislocazione della postazione di prelievo:

- la cabina A, dislocata al confine della discarica in prossimità della tangenziale e che risente principalmente del contributo delle emissioni autoveicolari ha evidenziato una certa costanza dei dati intesi sia come metallo rilevato sia come andamento delle concentrazioni
- il lotto 5, maggiormente influenzato dalle attività proprie della discarica, ha invece una maggiore disomogeneità dei dati (tipo di metallo e concentrazione) nei vari giorni di monitoraggio.

Per ecobioqual srl

Valeria Meineri

BIBLIOGRAFIA

D.lgs n. 155 del 13.08.10 – "Attuazione della Direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa";

Chu KL et al (1981) – "Evaluating statistical analysis and reproducibility of mutagenicity assay" Mutat Res 1981; 85: 119-132

IARC, International Agency for Research on cancer, Monographs, Supplement 2012. Available from http://monographs.iarc.fr/ENG/classification/index.php;

OECD. 1997. Bacterial Reverse Mutation Test. OECD Guidelines for the Testing of Chemicals Section 4 Health Effects, Test No. 471.Paris, France: Organization for Economic Cooperation and Development. pp 1–11.

Ramos de Rainho et al (2013) – "Genotoxicity of Polycyclic Aromatic Hydrocarbons and nitroderived in respirable airborne particulate matter collected from urban areas of Rio de Janeiro (Brazil)" -Biomed Research International volume 2013, article ID 765352;

 M. Tobiszewsk (2014) - "Application of diagnostic ratios of PAHs to characterize the pollution emission sources" - 2014 5th International Conference of Environmental Science and Technology – IPCBEE Vol. 69

Umbuzeiro G.A. et al (2008)- "Mutagenicity and DNA adduct formation of PAH, nitro-PAH, and oxy-PAH fractions of atmospheric particulate matter from Sao Paolo, Brazil" - Mutation Research 652 (2008) 72-80;

UNI EN 12341: 2014 – "Aria Ambiente – metodo gravimetrico di riferimento per la determinazione della concentrazione in massa di particolato sospeso PM₁₀ o PM _{2.5}"

ALLEGATO

RAPPORTI DI PROVA - DETERMINAZIONE DEGLI IDROCARBURI POLICICLICI AROMATICI E DEI METALLI SULLA FRAZIONE PM₁₀

Spett.le
BARRICALLA S.P.A.
VIA BRASILE 1
10093 COLLEGNO (TO)

Rapporto di Prova N. 171728/21

Nichelino 25/03/2021

Numero campione: 171728 Data accettazione: 22/02/21 Data inizio prove: 19/03/21 Data termine prove: 22/03/21

Descrizione Campione: Filtro da campionamento ambientale **Identificazione Campione:** Cabina meteo A (Filtro 1+3+5+7+10)

Note Cliente: Date di campionamento: dal 01/02/2021 al 09/02/2021 - volume totale aspirato: 1980 m3

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 22/02/21

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 22/02/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Idrocarburi policiclici aromatici		
	EPA 3545 A 2007 + EPA 8270 E 2018		
19/03/2021- 22/03/2021	Naftalene	0,023 ng/m3	
19/03/2021- 22/03/2021	Acenaftilene	0,053 ng/m3	
19/03/2021- 22/03/2021	Acenaftene	0,20 ng/m3	
19/03/2021- 22/03/2021	Fluorene	0,15 ng/m3	
19/03/2021- 22/03/2021	Fenantrene	0,44 ng/m3	
19/03/2021- 22/03/2021	Antracene	0,097 ng/m3	
19/03/2021- 22/03/2021	Fluorantene	0,34 ng/m3	
19/03/2021- 22/03/2021	Pirene	0,41 ng/m3	
19/03/2021- 22/03/2021	Benzo(a)antracene	0,54 ng/m3	
19/03/2021- 22/03/2021	Crisene	0,87 ng/m3	
19/03/2021- 22/03/2021	Benzo(b)fluorantene	0,92 ng/m3	
19/03/2021- 22/03/2021	Benzo(k)fluorantene	0,40 ng/m3	

Segue Rapporto di Prova N. 171728/21

Nichelino 25/03/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
19/03/2021- 22/03/2021	Benzo(j)fluorantene	0,56 ng/m3	
19/03/2021- 22/03/2021	Benzo(a)pirene	0,68 ng/m3	
19/03/2021- 22/03/2021	Benzo(e)pirene	0,88 ng/m3	
19/03/2021- 22/03/2021	Perilene	0,18 ng/m3	
19/03/2021- 22/03/2021	Indeno(1,2,3-cd)pirene	0,69 ng/m3	
19/03/2021- 22/03/2021	Dibenzo(a,h)antracene	0,19 ng/m3	
19/03/2021- 22/03/2021	Benzo(g,h,i)perilene	0,034 ng/m3	
19/03/2021- 22/03/2021	Dibenzo(a,e)pirene	0,036 ng/m3	
19/03/2021- 22/03/2021	Dibenzo(a,l)pirene	0,042 ng/m3	
19/03/2021- 22/03/2021	Dibenzo(a,i)pirene	0,017 ng/m3	
19/03/2021- 22/03/2021	Dibenzo(a,h)pirene	< 0,0010 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

dott. Marco Roveretto

Spett.le
BARRICALLA S.P.A.
VIA BRASILE 1
10093 COLLEGNO (TO)

Rapporto di Prova N. 171729/21

Nichelino 25/03/2021

Numero campione: 171729 Data accettazione: 22/02/21 Data inizio prove: 19/03/21 Data termine prove: 22/03/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Lotto 5 (Filtro 2+4+6+8)

Note Cliente: Date di campionamento: dal 01/02/2021 al 05/02/2021 - volume totale aspirato: 1570 m3

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 22/02/21

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 22/02/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Idrocarburi policiclici aromatici EPA 3545 A 2007 + EPA 8270 E 2018		
19/03/2021- 22/03/2021	Naftalene	0,083 ng/m3	
19/03/2021- 22/03/2021	Acenaftilene	0,018 ng/m3	
19/03/2021- 22/03/2021	Acenaftene	0,071 ng/m3	
19/03/2021- 22/03/2021	Fluorene	0,0080 ng/m3	
19/03/2021- 22/03/2021	Fenantrene	0,18 ng/m3	
19/03/2021- 22/03/2021	Antracene	0,040 ng/m3	
19/03/2021- 22/03/2021	Fluorantene	0,17 ng/m3	
19/03/2021- 22/03/2021	Pirene	0,26 ng/m3	
19/03/2021- 22/03/2021	Benzo(a)antracene	0,32 ng/m3	
19/03/2021- 22/03/2021	Crisene	0,53 ng/m3	
19/03/2021- 22/03/2021	Benzo(b)fluorantene	0,56 ng/m3	
19/03/2021- 22/03/2021	Benzo(k)fluorantene	0,29 ng/m3	

Segue Rapporto di Prova N. 171729/21

Nichelino 25/03/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
19/03/2021- 22/03/2021	Benzo(j)fluorantene	0,36 ng/m3	
19/03/2021- 22/03/2021	Benzo(a)pirene	0,44 ng/m3	
19/03/2021- 22/03/2021	Benzo(e)pirene	0,57 ng/m3	
19/03/2021- 22/03/2021	Perilene	0,11 ng/m3	
19/03/2021- 22/03/2021	Indeno(1,2,3-cd)pirene	0,46 ng/m3	
19/03/2021- 22/03/2021	Dibenzo(a,h)antracene	0,12 ng/m3	
19/03/2021- 22/03/2021	Benzo(g,h,i)perilene	0,41 ng/m3	
19/03/2021- 22/03/2021	Dibenzo(a,e)pirene	0,022 ng/m3	
19/03/2021- 22/03/2021	Dibenzo(a,l)pirene	0,027 ng/m3	
19/03/2021- 22/03/2021	Dibenzo(a,i)pirene	0,0090 ng/m3	
19/03/2021- 22/03/2021	Dibenzo(a,h)pirene	< 0,0010 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

dott. Marco Roveretto

Spett.le
BARRICALLA S.P.A.
VIA BRASILE 1
10093 COLLEGNO (TO)

Rapporto di Prova N. 171719/21

Nichelino 19/03/2021

Numero campione: 171719 Data accettazione: 22/02/21 Data inizio prove: 09/03/21 Data termine prove: 12/03/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 1 Cabina meteo A

Note Cliente: Date di campionamento: dal 01/02/2021 al 02/02/2021 - volume totale aspirato: 396 m3 - peso 12.83 mg

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 22/02/21

ra Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 22/02/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
09/03/2021- 12/03/2021	UNI EN 14902:2005 Alluminio	< 1,60 ng/m3	
09/03/2021- 12/03/2021	Antimonio	0,410 ng/m3	
09/03/2021- 12/03/2021	Argento	0,0150 ng/m3	10
09/03/2021- 12/03/2021	Arsenico	0,210 ng/m3	
09/03/2021- 12/03/2021	Bario	< 0,160 ng/m3	
09/03/2021- 12/03/2021	Berillio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Boro	< 3,0 ng/m3	
09/03/2021- 12/03/2021	Cadmio	0,0419 ng/m3	
09/03/2021- 12/03/2021	Cobalto	0,0916 ng/m3	
09/03/2021- 12/03/2021	Cromo	3,52 ng/m3	
09/03/2021- 12/03/2021	Ferro	382 ng/m3	
09/03/2021- 12/03/2021	Manganese	7,28 ng/m3	

Pagina 1 di 2

Segue Rapporto di Prova N. 171719/21

Nichelino 19/03/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
09/03/2021- 12/03/2021	Mercurio	< 0,0310 ng/m3	
09/03/2021- 12/03/2021	Molibdeno	0,604 ng/m3	
09/03/2021- 12/03/2021	Nichel	1,22 ng/m3	
09/03/2021- 12/03/2021	Piombo	2,83 ng/m3	
09/03/2021- 12/03/2021	Rame	22,0 ng/m3	
09/03/2021- 12/03/2021	Selenio	0,0820 ng/m3	
09/03/2021- 12/03/2021	Stagno	3,58 ng/m3	
09/03/2021- 12/03/2021	Tallio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Tellurio	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Titanio	1,33 ng/m3	
09/03/2021- 12/03/2021	Vanadio	0,128 ng/m3	
09/03/2021- 12/03/2021	Zinco	< 0,3000 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

dott. Marco Roveretto

Rapporto di Prova N. 171720/21

Nichelino 19/03/2021

Numero campione: 171720 Data inizio prove: 09/03/21 Data accettazione: 22/02/21 Data termine prove: 12/03/21

Filtro da campionamento ambientale Descrizione Campione:

Filtro 2 Lotto 5 Identificazione Campione:

Date di campionamento: dal 01/02/2021 al 02/02/2021 - volume totale aspirato: 398 m3 - peso 12.5 mg **Note Cliente:** 22/02/21

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento:

al campione così come ricevuto Effettuato da Ecobiogual S.r.l. Data ricevimento campione: 22/02/21 Campionamento:

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
09/03/2021- 12/03/2021	UNI EN 14902:2005 Alluminio	110 ng/m3	
09/03/2021- 12/03/2021	Antimonio	0,350 ng/m3	
09/03/2021- 12/03/2021	Argento	0,0373 ng/m3	
09/03/2021- 12/03/2021	Arsenico	0,405 ng/m3	
09/03/2021- 12/03/2021	Bario	205 ng/m3	
09/03/2021- 12/03/2021	Berillio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Boro	170 ng/m3	
09/03/2021- 12/03/2021	Cadmio	3,29 ng/m3	
09/03/2021- 12/03/2021	Cobalto	0,202 ng/m3	
09/03/2021- 12/03/2021	Cromo	7,41 ng/m3	
09/03/2021- 12/03/2021	Ferro	405 ng/m3	
09/03/2021- 12/03/2021	Manganese	12,3 ng/m3	

Pagina 1 di 2

Segue Rapporto di Prova N. 171720/21

Nichelino 19/03/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
09/03/2021- 12/03/2021	Mercurio	< 0,0310 ng/m3	
09/03/2021- 12/03/2021	Molibdeno	0,669 ng/m3	
09/03/2021- 12/03/2021	Nichel	4,17 ng/m3	
09/03/2021- 12/03/2021	Piombo	12,7 ng/m3	
09/03/2021- 12/03/2021	Rame	26,9 ng/m3	
09/03/2021- 12/03/2021	Selenio	0,143 ng/m3	
09/03/2021- 12/03/2021	Stagno	4,12 ng/m3	
09/03/2021- 12/03/2021	Tallio	0,0158 ng/m3	
09/03/2021- 12/03/2021	Tellurio	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Titanio	3,83 ng/m3	
09/03/2021- 12/03/2021	Vanadio	0,263 ng/m3	
09/03/2021- 12/03/2021	Zinco	150,0 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 171721/21

Nichelino 19/03/2021

Numero campione: 171721 Data accettazione: 22/02/21 Data inizio prove: 09/03/21 Data termine prove: 12/03/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 3 Cabina meteo A

Note Cliente: Date di campionamento: dal 02/02/2021 al 03/02/2021 - volume totale aspirato: 396 m3 - peso 20.1 mg

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 22/02/21

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 22/02/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
	UNI EN 14902:2005		
09/03/2021- 12/03/2021	Alluminio	< 1,60 ng/m3	
09/03/2021- 12/03/2021	Antimonio	0,245 ng/m3	
09/03/2021- 12/03/2021	Argento	0,0150 ng/m3	
09/03/2021- 12/03/2021	Arsenico	0,214 ng/m3	
09/03/2021- 12/03/2021	Bario	< 0,160 ng/m3	
09/03/2021- 12/03/2021	Berillio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Boro	< 3,0 ng/m3	
09/03/2021- 12/03/2021	Cadmio	0,155 ng/m3	
09/03/2021- 12/03/2021	Cobalto	0,0697 ng/m3	
09/03/2021- 12/03/2021	Cromo	2,76 ng/m3	
09/03/2021- 12/03/2021	Ferro	307 ng/m3	
09/03/2021- 12/03/2021	Manganese	5,56 ng/m3	

Pagina 1 di 2

Segue Rapporto di Prova N. 171721/21

Nichelino 19/03/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
09/03/2021- 12/03/2021	Mercurio	< 0,0310 ng/m3	
09/03/2021- 12/03/2021	Molibdeno	0,505 ng/m3	
09/03/2021- 12/03/2021	Nichel	0,719 ng/m3	
09/03/2021- 12/03/2021	Piombo	5,45 ng/m3	
09/03/2021- 12/03/2021	Rame	24,3 ng/m3	
09/03/2021- 12/03/2021	Selenio	0,0980 ng/m3	
09/03/2021- 12/03/2021	Stagno	2,99 ng/m3	
09/03/2021- 12/03/2021	Tallio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Tellurio	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Titanio	0,970 ng/m3	
09/03/2021- 12/03/2021	Vanadio	0,115 ng/m3	
09/03/2021- 12/03/2021	Zinco	< 0,3000 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 171722/21

Nichelino 19/03/2021

Numero campione: 171722 Data accettazione: 22/02/21 Data inizio prove: 09/03/21 Data termine prove: 12/03/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 4 Lotto 5

Note Cliente: Date di campionamento: dal 02/02/2021 al 03/02/2021 - volume totale aspirato: 364 m3 - peso 21.2 mg

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento:

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 22/02/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
	UNI EN 14902:2005		
09/03/2021- 12/03/2021	Alluminio	< 1,60 ng/m3	
09/03/2021- 12/03/2021	Antimonio	0,109 ng/m3	
09/03/2021- 12/03/2021	Argento	0,0250 ng/m3	
09/03/2021- 12/03/2021	Arsenico	0,314 ng/m3	
09/03/2021- 12/03/2021	Bario	< 0,160 ng/m3	
09/03/2021- 12/03/2021	Berillio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Boro	< 3,0 ng/m3	
09/03/2021- 12/03/2021	Cadmio	2,96 ng/m3	
09/03/2021- 12/03/2021	Cobalto	0,117 ng/m3	
09/03/2021- 12/03/2021	Cromo	3,96 ng/m3	
09/03/2021- 12/03/2021	Fеrro	235 ng/m3	
09/03/2021- 12/03/2021	Manganese	6,78 ng/m3	

Pagina 1 di 2

Segue Rapporto di Prova N. 171722/21

Nichelino 19/03/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
09/03/2021- 12/03/2021	Mercurio	< 0,0310 ng/m3	
09/03/2021- 12/03/2021	Molibdeno	0,391 ng/m3	
09/03/2021- 12/03/2021	Nichel	2,16 ng/m3	
09/03/2021- 12/03/2021	Piombo	13,2 ng/m3	
09/03/2021- 12/03/2021	Rame	56,6 ng/m3	
09/03/2021- 12/03/2021	Selenio	0,111 ng/m3	
09/03/2021- 12/03/2021	Stagno	2,48 ng/m3	
09/03/2021- 12/03/2021	Tallio	0,00930 ng/m3	
09/03/2021- 12/03/2021	Tellurio	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Titanio	2,30 ng/m3	
09/03/2021- 12/03/2021	Vanadio	0,166 ng/m3	
09/03/2021- 12/03/2021	Zinco	< 0,3000 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 171723/21

Nichelino 19/03/2021

Numero campione: 171723 Data accettazione: 22/02/21 Data inizio prove: 09/03/21 Data termine prove: 12/03/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 5 Cabina meteo A

Date di campionamento: dal 03/02/2021 al 04/02/2021 - volume totale aspirato: 396 m3 - peso 20.3 mg Note Cliente: 22/02/21

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento:

al campione così come ricevuto Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 22/02/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10 UNI EN 14902:2005		
09/03/2021- 12/03/2021	Alluminio	< 1,60 ng/m3	
09/03/2021- 12/03/2021	Antimonio	0,270 ng/m3	
09/03/2021- 12/03/2021	Argento	0,0177 ng/m3	
09/03/2021- 12/03/2021	Arsenico	0,224 ng/m3	
09/03/2021- 12/03/2021	Bario	< 0,160 ng/m3	
09/03/2021- 12/03/2021	Berillio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Boro	< 3,0 ng/m3	
09/03/2021- 12/03/2021	Cadmio	0,144 ng/m3	
09/03/2021- 12/03/2021	Cobalto	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Cromo	2,68 ng/m3	
09/03/2021- 12/03/2021	Ferro	344 ng/m3	
09/03/2021- 12/03/2021	Manganese	5,87 ng/m3	

Pagina 1 di 2

Segue Rapporto di Prova N. 171723/21

Nichelino 19/03/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
09/03/2021- 12/03/2021	Mercurio	< 0,0310 ng/m3	
09/03/2021- 12/03/2021	Molibdeno	0,572 ng/m3	
09/03/2021- 12/03/2021	Nichel	0,652 ng/m3	
09/03/2021- 12/03/2021	Piombo	3,77 ng/m3	
09/03/2021- 12/03/2021	Rame	37,4 ng/m3	
09/03/2021- 12/03/2021	Selenio	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Stagno	3,17 ng/m3	
09/03/2021- 12/03/2021	Tallio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Tellurio	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Titanio	1,19 ng/m3	
09/03/2021- 12/03/2021	Vanadio	0,121 ng/m3	
09/03/2021- 12/03/2021	Zinco	< 0,3000 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 171724/21

Nichelino 19/03/2021

Numero campione: 171724 Data accettazione: 22/02/21 Data inizio prove: 09/03/21 Data termine prove: 12/03/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 6 Lotto 5

Note Cliente: Date di campionamento: dal 03/02/2021 al 04/02/2021 - volume totale aspirato: 405 m3 - peso 20.8

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 22/02/21

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 22/02/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
	UNI EN 14902:2005		
09/03/2021- 12/03/2021	Alluminio	94,0 ng/m3	
09/03/2021- 12/03/2021	Antimonio	0,470 ng/m3	
09/03/2021- 12/03/2021	Argento	0,0440 ng/m3	
09/03/2021- 12/03/2021	Arsenico	0,397 ng/m3	
09/03/2021- 12/03/2021	Bario	163 ng/m3	
09/03/2021- 12/03/2021	Berillio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Boro	140 ng/m3	¥
09/03/2021- 12/03/2021	Cadmio	4,39 ng/m3	
09/03/2021- 12/03/2021	Cobalto	0,207 ng/m3	
09/03/2021- 12/03/2021	Cromo	6,61 ng/m3	
09/03/2021- 12/03/2021	Ferro	344 ng/m3	
09/03/2021- 12/03/2021	Manganese	11,3 ng/m3	

Pagina 1 di 2

Segue Rapporto di Prova N. 171724/21

Nichelino 19/03/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
09/03/2021- 12/03/2021	Mercurio	< 0,0310 ng/m3	
09/03/2021- 12/03/2021	Molibdeno	0,641 ng/m3	
09/03/2021- 12/03/2021	Nichel	3,89 ng/m3	
09/03/2021- 12/03/2021	Piombo	15,9 ng/m3	
09/03/2021- 12/03/2021	Rame	28,1 ng/m3	
09/03/2021- 12/03/2021	Selenio	0,139 ng/m3	
09/03/2021- 12/03/2021	Stagno	3,66 ng/m3	
09/03/2021- 12/03/2021	Tallio	0,0174 ng/m3	
09/03/2021- 12/03/2021	Tellurio	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Titanio	3,84 ng/m3	
09/03/2021- 12/03/2021	Vanadio	0,280 ng/m3	
09/03/2021- 12/03/2021	Zinco	141,0 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 171725/21

Nichelino 19/03/2021

Numero campione: 171725 Data accettazione: 22/02/21 Data inizio prove: 09/03/21 Data termine prove: 12/03/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 7 Cabina meteo A

Note Cliente: Date di campionamento: dal 04/02/2021 al 05/02/2021 - volume totale aspirato: 396 m3 - peso 20.1 mg 22/02/21

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento:

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 22/02/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10 UNI EN 14902:2005		
09/03/2021- 12/03/2021	Alluminio	< 1,60 ng/m3	
09/03/2021- 12/03/2021	Antimonio	0,0400 ng/m3	
09/03/2021- 12/03/2021	Argento	0,0108 ng/m3	
09/03/2021- 12/03/2021	Arsenico	0,217 ng/m3	
09/03/2021- 12/03/2021	Bario	126 ng/m3	
09/03/2021- 12/03/2021	Berillio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Boro	47 ng/m3	
09/03/2021- 12/03/2021	Cadmio	0,0800 ng/m3	
09/03/2021- 12/03/2021	Cobalto	0,0635 ng/m3	
09/03/2021- 12/03/2021	Cromo	1,61 ng/m3	
09/03/2021- 12/03/2021	Ferro	342 ng/m3	
09/03/2021- 12/03/2021	Manganese	6,86 ng/m3	

Segue Rapporto di Prova N. 171725/21

Nichelino 19/03/2021


Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
09/03/2021- 12/03/2021	Mercurio	< 0,0310 ng/m3	
09/03/2021- 12/03/2021	Molibdeno	0,643 ng/m3	
09/03/2021- 12/03/2021	Nichel	0,557 ng/m3	
09/03/2021- 12/03/2021	Piombo	2,18 ng/m3	
09/03/2021- 12/03/2021	Rame	18,8 ng/m3	
09/03/2021- 12/03/2021	Selenio	0,0900 ng/m3	
09/03/2021- 12/03/2021	Stagno	4,45 ng/m3	
09/03/2021- 12/03/2021	Tallio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Tellurio	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Titanio	1,39 ng/m3	
09/03/2021- 12/03/2021	Vanadio	0,123 ng/m3	
09/03/2021- 12/03/2021	Zinco	75,70 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 171726/21

Nichelino 19/03/2021

Numero campione: 171726

Data accettazione: 22/02/21

Data inizio prove: 09/03/21 Data termine prove: 12/03/21

Descrizione Campione:

Filtro da campionamento ambientale

Identificazione Campione:

Procedura Campionamento:

Filtro 8 Lotto 5

Note Cliente:

Date di campionamento: dal 04/02/2021 al 05/02/2021 - volume totale aspirato: 403 m3 - peso 17.4 m3

Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono

Data di campionamento: 22/02/21

al campione così come ricevuto

Campionamento:

Effettuato da Ecobioqual S.r.l.

Data ricevimento campione: 22/02/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
	UNI EN 14902:2005		
09/03/2021- 12/03/2021	Alluminio	143 ng/m3	
09/03/2021- 12/03/2021	Antimonio	0,429 ng/m3	
09/03/2021- 12/03/2021	Argento	0,0270 ng/m3	
09/03/2021- 12/03/2021	Arsenico	0,329 ng/m3	
09/03/2021- 12/03/2021	Bario	390 ng/m3	
09/03/2021- 12/03/2021	Berillio	< 0,00630 ng/m3	
09/03/2021- 12/03/2021	Boro	270 ng/m3	
09/03/2021- 12/03/2021	Cadmio	2,24 ng/m3	
09/03/2021- 12/03/2021	Cobalto	0,122 ng/m3	
09/03/2021- 12/03/2021	Cromo	3,28 ng/m3	
09/03/2021- 12/03/2021	Fеrro	297 ng/m3	
09/03/2021- 12/03/2021	Manganese	9,66 ng/m3	

Pagina 1 di 2

Segue Rapporto di Prova N. 171726/21

Nichelino 19/03/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
09/03/2021- 12/03/2021	Mercurio	< 0;0310 ng/m3	
09/03/2021- 12/03/2021	Molibdeno	0,631 ng/m3	
09/03/2021- 12/03/2021	Nichel	1,85 ng/m3	
09/03/2021- 12/03/2021	Piombo	10,3 ng/m3	
09/03/2021- 12/03/2021	Rame	19,1 ng/m3	e e
09/03/2021- 12/03/2021	Selenio	0,144 ng/m3	
09/03/2021- 12/03/2021	Stagno	4,64 ng/m3	
09/03/2021- 12/03/2021	Tallio	0,120 ng/m3	
09/03/2021- 12/03/2021	Tellurio	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Titanio	2,69 ng/m3	
09/03/2021- 12/03/2021	Vanadio	0,198 ng/m3	
09/03/2021- 12/03/2021	Zinco	294,9 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 171727/21

Nichelino 19/03/2021

Numero campione: 171727 Data accettazione: 22/02/21 Data inizio prove: 09/03/21 Data termine prove: 12/03/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 10 Cabina meteo A

Note Cliente: Date di campionamento: dal 08/02/2021 al 09/02/2021 - volume totale aspirato: 396 m3 - peso 10 mg

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 22/02/21

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 22/02/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
	UNI EN 14902:2005		
09/03/2021- 12/03/2021	Alluminio	392 ng/m3	
09/03/2021- 12/03/2021	Antimonio	0,364 ng/m3	
09/03/2021- 12/03/2021	Argento	0,0203 ng/m3	M. 198
09/03/2021- 12/03/2021	Arsenico	0,190 ng/m3	
09/03/2021- 12/03/2021	Bario	894 ng/m3	7.00
09/03/2021- 12/03/2021	Berillio	0,00680 ng/m3	
09/03/2021- 12/03/2021	Boro	480 ng/m3	
09/03/2021- 12/03/2021	Cadmio	0,0720 ng/m3	
09/03/2021- 12/03/2021	Cobalto	0,0850 ng/m3	
09/03/2021- 12/03/2021	Cromo	2,17 ng/m3	
09/03/2021- 12/03/2021	Ferro	372 ng/m3	
09/03/2021- 12/03/2021	Manganese	6,27 ng/m3	

Segue Rapporto di Prova N. 171727/21

Nichelino 19/03/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
09/03/2021- 12/03/2021	Mercurio	< 0,0310 ng/m3	
09/03/2021- 12/03/2021	Molibdeno	0,510 ng/m3	
09/03/2021- 12/03/2021	Nichel	0,905 ng/m3	
09/03/2021- 12/03/2021	Piombo	2,07 ng/m3	
09/03/2021- 12/03/2021	Rame	26,5 ng/m3	
09/03/2021- 12/03/2021	Selenio	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Stagno	2,85 ng/m3	
09/03/2021- 12/03/2021	Tallio	0,00670 ng/m3	
09/03/2021- 12/03/2021	Tellurio	< 0,0630 ng/m3	
09/03/2021- 12/03/2021	Titanio	1,96 ng/m3	
09/03/2021- 12/03/2021	Vanadio	0,171 ng/m3	
09/03/2021- 12/03/2021	Zinco	584,0 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rif.	0913C/	21
------	--------	-----------

Torino, 30 settembre 2021

Spett.le **Barricalla S.p.A**Via Brasile 1
10093 Collegno
TORINO

OGGETTO: Caratterizzazione biologica delle polveri aerodisperse

In riferimento alla vs. richiesta di analisi, inviamo i risultati delle valutazioni svolte su campioni di polveri aerodisperse (frazione PM_{10}) prelevati c/o la discarica.

Cordiali saluti

1. PREMESSA

Con nota protocollo n. 433-2020U/DIR/PL/sb del 04/03/2020 la società Barricalla S.p.a. ha trasmesso agli Enti Competenti la relazione conclusiva relativa alle attività di monitoraggio previste dallo *Studio del particolato aerodisperso,* come stabilito al punto 9) del documento D.D. di Modifica Sostanziale di AIA n. 317- 35088/2017 del 11/12/2017 e smi.

Lo studio condotto nel triennio 2017-2019, inserito nel Piano di Sorveglianza e Controllo (nota protocollo n. 1106-2016U/DIR/PL/sb del 02/11/2016), è stato finalizzato ad acquisire informazioni ambientali che consentissero all'Azienda di conoscere in modo più completo le eventuali emissioni/immissioni prodotte durante la sua attività al fine di garantire un adeguato controllo del comparto aria e quindi di tenere sotto controllo la **propria causalità e responsabilità** nell'indurre eventi dannosi attraverso le emissioni atmosferiche provenienti dalle diverse sorgenti impiantistiche.

Questa attività è stata eseguita così come richiesto al punto 12) della D.D. n. 267-26765/2016 del 06/10/2016 con la quale è stato rilasciato il provvedimento di modifica sostanziale della determina n. 262-42262/2012 del 30/10/2012 (rilascio di Autorizzazione Integrata Ambientale) che autorizza il progetto di "Sfruttamento e valorizzazione delle restanti superfici allo smaltimento dei rifiuti e completamento del parco fotovoltaico" presentato dalla Società Barricalla SpA. L'atto ha ricompreso le prescrizioni aggiornate relative al Lotto 3 ed al Lotto 4 in attività, nonché ha autorizzato la realizzazione e la gestione del Lotto 5. Successivamente, nel 2017 con DD 317-35088/2017 del 11/12/2017 è stata autorizzata l'ulteriore sopraelevazione del lotto 3 (per un volume massimo autorizzato di 557.500 m³ di rifiuti).

A seguito della trasmissione della relazione conclusiva, la CMTO con nota 25702/TA1/GLS/SR, chiede alla Società Barricalla, nelle more delle osservazioni richieste al Comune di Collegno ed all'ARPA Dipartimento Territoriale Piemonte Nord Ovest, di proseguire le attività previste dallo Studio.

Nel corso del 2020, durante l'emergenza sanitaria da Covid-19, e nonostante le restrizioni adottate a livello nazionale, la Società ha proseguito i monitoraggi effettuando, oltre al controllo previsto in estate, anche una campagna di monitoraggio nel mese di aprile 2020 basandosi sulle seguenti considerazioni:

- Eseguire i prelievi in questo periodo è stato ritenuto di estremo interesse perché si è
 potuto effettuare una "fotografia" di una situazione normalmente considerata "unica"
 ed "improbabile" in quanto caratterizzata da un'improvvisa e contemporanea
 sospensione di tutte le attività commerciali, di ristorazione, di molte attività lavorative
 e scolastiche con la conseguente significativa riduzione in primo luogo del traffico
 autoveicolare, ma anche altre di emissioni di tipo industriale
- La società, data la natura delle proprie attività ritenute essenziali, ha proseguito il lavoro anche durante l'emergenza Covid e pertanto l'esecuzione dei monitoraggi in assenza di altre sorgenti emissive sul territorio (o comunque in situazione di forte contenimento delle stesse) consente di apprezzare meglio il suo apporto sul comparto atmosfera.

Nel corso del 2021, in riferimento ed in accordo con le osservazioni riportate da Arpa Piemonte nel documento prot. N. 86612 "Osservazioni tecniche Discarica per rifiuti pericolosi SpA – osservazioni tecniche protocollo di monitoraggio integrativo" sono state proseguite le attività di monitoraggio avendo cura di:

- eseguire i prelievi del particolato atmosferico contestualmente nelle due postazioni al
 fine di una più corretta comparazione dei risultati ottenuti e prevedere la
 determinazione della componente metallica nei campioni di PM₁₀ con particolare
 riferimento agli analiti per i quali vengono previste deroghe nella composizione
 dell'eluato dei rifiuti ammessi allo smaltimento. Già a partire dalla campagna eseguita
 nel mese di aprile 2020 è stata adottata questa strategia di monitoraggio e tutti i
 monitoraggi successivi sono in linea con quanto richiesto dagli enti di controllo.
- Nel corso del monitoraggio invernale del 2021 è stato eseguito, contestualmente ai prelievi di particolato atmosferico con i campionatori ad alto volume e limitatamente al periodo temporale di 1 settimana, il campionamento gravimetrico delle polveri mediante sistemi di campionamento del PM₁₀ sequenziali in linea con l'intervallo di tempo stabilito per le centraline tra le ore 00 e le ore 24. Lo scopo di questo monitoraggio è stato quello di verificare la conformità dei risultati che si ottengono con quanto rilevato sul territorio. A seguito della valutazione dei risultati, coerenti tra i due sistemi di campionamento e coerenti con quanto registrato dalle centraline della rete provinciale, l'azienda ha deciso per la stagione estiva di non eseguire il monitoraggio delle polveri anche con il campionamento sequenziale ed eventualmente riprogrammarlo per la prossima stagione invernale.

In quest'ottica, sono state eseguite campagne semestrali che hanno previsto

- Campionamento e determinazione gravimetrica delle polveri PM₁₀
- Valutazione delle potenzialità mutagene delle polveri PM₁₀ mediante esecuzione del test di Ames (Salmonella/microsome assay)
- Caratterizzazione chimica delle polveri PM₁₀ prendendo in esame gli Idrocarburi Policiclici Aromatici e la componente metallica quali traccianti ideali per la caratterizzazione del loro profilo chimico e tossicologico.

Il presente documento rappresenta il rapporto delle attività effettuate nell'ambito della seconda campagna del 2021.

2. CAMPIONAMENTI E LOCALIZZAZIONE PUNTI PRELIEVO

La campagna di monitoraggio della <u>frazione PM₁₀ di particolato atmosferico</u> eseguita nel mese di luglio/agosto 2021 ha previsto, come punti di monitoraggio, gli stessi già oggetto di indagine a partire dal 2015 ovvero presso la centralina A della discarica (postazione rimasta invariata rispetto ai monitoraggi eseguiti negli anni precedenti) ed in prossimità del lotto 5 (figura 1), al fine di poter tenere sotto controllo la nuova parte della discarica in cui vengono attualmente conferiti i rifiuti.

Figura 1 - dislocazione centraline particolato atmosferico

Per ciascuna postazione sono stati eseguiti in contemporanea 5 campionamenti giornalieri consecutivi, della durata di 24 ore.

Nella tabella 1 viene riassunto il calendario dei prelievi:

Tabella 1: periodo di campionamento del particolato PM₁₀ - campionatori alto volume

Tabella 1. periodo di campionamento dei particolato i William campionatori alto Volume					
SIT	NOTE meteo				
Centralina A	28/07/2021 – 29/07/2021 29/07/2021 -30/07/2021				
Lotto 5	02/08/2021 - 03/08/2021 03/08/2021 - 04/08/2021 04/08/2021 -05/08/2021	sereno			

3. ATTIVITÀ DELLA DISCARICA DURANTE I PRELIEVI

Durante il <u>monitoraggio</u> sono stati conferiti nelle aree del lotto 5 le seguenti tipologie di rifiuti (e relative quantità):

Tabella 2 - rifiuti conferiti dal 28/07/2021 al 06/08/2021

			•	•					
					Data				
CER – quantità kg	28/07/2021	29/07/2021	30/07/2021	02/08/2021	03/08/2021	04/08/2021	05/08/2021	06/08/2021	Totale complessivo
100401*	165370	81170	26470		79400	108980	55580	26660	543630
170503*	130200	113070	113800	114040	114850	113930	114040	113410	927340
170601	22280	14530				3050	3590	9680	53130
170603*	37430	28360	84650			25290	32530	54100	262360
170605*	37840	57020	29790	50870	59390	29450	23460	26260	314080
170903	26460	22840		48330	39230	51950	35530	7320	231660
190304*	265870	264980	264170	141640	1442040	264600	264410	444510	3352220
Totale complessivo	685450	581970	518880	354880	1734910	597250	529140	681940	5684420

Rifiuto	Quantità Kg	Quantità MC
100401	543630	237,506
170503	927340	699
170601	53130	230,5
170603	262360	802,09
170605	314080	546,225
170903	231660	304
190304	3352220	1715,511
Totale complessivo	5684420	4534,832

Le tipologie di rifiuti smaltite nel periodo di indagine appartengono alle seguenti categorie:

- <u>Attività di trattamento:</u> es. 190304 (rifiuti contrassegnati come pericolosi, parzialmente stabilizzati diversi da quelli di cui al punto 190308 (mercurio parzialmente stabilizzato),
- Attività di recupero dei rifiuti: es 100401 (scorie della produzione primaria e secondaria)
- Attività di bonifica di materiali contenenti amianto: 170601 (materiali isolanti contenenti amianto) e 170605 (materiali da costruzione contenenti amianto)
- <u>Attività di costruzioni e demolizioni:</u> 170503 (terra e rocce, contenenti sostanze pericolose),
- <u>Rifiuti delle operazioni di costruzione e demolizione</u> (compreso il terreno proveniente da siti contaminati): 170903 altri rifiuti dell'attività di costruzione e demolizione (compresi rifiuti misti) contenenti sostanze pericolose

4. MODALITÀ DI CAMPIONAMENTO

I prelievi del particolato atmosferico sono stati eseguiti secondo le modalità indicate nel **D.M. n. 155** del **13/08/2010** ovvero in conformità a quanto riportato nella **Direttiva 1999/30/CE**.

Per il prelievo della frazione PM_{10} sono stati utilizzati due campionatori ad alto volume (TISH Environmental, INC., mod. TE-6070V, Analitica— Strumenti Scientifici) conformi al metodo EPA ed al D.M. 15/04/94, con un flusso di aspirazione di 1.1 m³/min (10%) ed utilizzando filtri in fibra di vetro 20.3 x 25.4 cm. Il campionatore utilizzato funziona secondo il seguente principio: aspira l'aria atmosferica a flusso costante attraverso un sistema di ingresso di geometria particolare per cui il particolato sospeso viene separato inerzialmente in uno o più frazioni, in base alle dimensioni. Le frazioni del particolato con diametro aerodinamico inferiore o uguale a 10 μ m vengono raccolte su appositi filtri per il periodo di campionamento stabilito.

Il metodo di riferimento per il campionamento e la misurazione del PM_{10} segue quanto indicato nella norma UNI EN 12341:2014 per PM_{10} o $PM_{2.5}$.

5. PREPARAZIONE DEI CAMPIONI PER LE ANALISI

I filtri per la valutazione del particolato atmosferico stati condizionati prima e dopo il campionamento in una camera di pesatura condizionata, modello "Cappa Activa Climatic Acquaria", ad una temperatura di 20 ± 1 °C e un'umidità relativa di 50 ± 5 %, come previsto dalle normative riportate. L'analisi gravimetrica è stata effettuata utilizzando una bilancia analitica con una risoluzione di $10~\mu g$ modello "Kern 770-60 Kern & Sohngnh (max 60 g d 0.00001)".

Al termine del periodo di campionamento (24 ore), i filtri sono stati nuovamente condizionati e pesati per determinare, per differenza di peso, la quantità di PM_{10} raccolta.

Successivamente i 5 filtri relativi a ciascuna centralina sono stati unificati a formare un unico campione, frammentati ed estratti in diclorometano (mediante sonicazione e soxhlet) per lo svolgimento della caratterizzazione biologica.

Tutti gli eluati ottenuti sono stati mandati a secco con evaporatore rotante sottovuoto e risospesi in idonee quantità di Dimetilsolfossido (DMSO).

6. ANALISI BIOLOGICHE: TEST DI MUTAGENESI (SALMONELLA/MICROSOME ASSAY)

Questo test è uno dei più utilizzati per gli studi di mutagenesi ambientale in particolare per uno screening iniziale dei campioni. I principali motivi che ne giustificano l'utilizzo sono la relativa semplicità e rapidità di esecuzione ed il discreto valore predittivo nei confronti della potenziale cancerogenicità di singoli composti o di miscele complesse.

Il test di Ames utilizza ceppi di *Salmonella typhimurium* modificati a livello dell'operone dell'istidina, in modo da renderli auxotrofi per questo amminoacido. I ceppi così modificati non sono in grado di crescere in un terreno privo di questo amminoacido e possono fungere da marker dell'attività mutagena in quanto, se sottoposti ad un agente mutageno, riprendono la loro primitiva funzionalità, crescendo anche quando l'amminoacido non è disponibile.

Il principio sul quale si fonda questo metodo è, perciò, il fenomeno della **retromutazione** dei batteri esposti all'azione di una sostanza mutagena, dalla condizione di auxotrofia a quella di prototrofia per l'istidina (istidina-dipendenza).

Secondo quanto riportato in letteratura, per lo studio della mutagenicità del particolato e di campioni di suolo, sono stati utilizzati, nel corso del presente lavoro, per la loro maggiore sensibilità ai mutageni presenti in questa matrice, i ceppi TA98 e TA100 che presentano le seguenti caratteristiche: il ceppo TA 98 evidenzia mutageni con azione di frameshift che provocano lo slittamento del modulo di lettura del codice genetico, mentre il ceppo TA 100 evidenzia mutageni che provocano una sostituzione di base che inducono una lettura scorretta del codice genetico.

Poiché alcuni contaminanti ambientali non sono mutageni diretti ma lo diventano a seguito delle trasformazioni e attivazioni metaboliche che avvengono nell'organismo, al fine di studiare tale effetto genotossico, viene utilizzata durante lo svolgimento del test una frazione microsomiale di fegato di ratto (S9). L'utilizzazione dell'S9 permette, quindi, di evidenziare quelle sostanze mutagene definite indirette.

Il test è stato eseguito impiegando capsule Petri contenenti terreno minimo sul quale è stata piastrata un'aliquota di terreno liquido contenente una quantità limitata di istidina e biotina, una sospensione di *Salmonella typhimurium*, il campione da saggiare alle diverse dosi e, nel caso di utilizzo dell'attivazione metabolica, dell'S9 mix al 10%. Ogni campione è stato saggiato a **dosi** diverse in triplicato.

Le piastre sono state, quindi, incubate per 48 ore a 37°C.

Al termine del periodo di incubazione, si ottiene una crescita base dei batteri legata alla quantità limitata di istidina presente nel terreno a cui si sovrappongono le colonie di revertenti (istidina-indipendenti).

In particolare, si ha un numero di colonie di revertenti di base costante, diverso per ogni ceppo, dovuto alla retromutazione spontanea dei batteri e si assiste ad un aumento del numero di colonie di revertenti proporzionale alla concentrazione e alla potenzialità mutagena del campione testato.

In ogni saggio eseguito con il test di Ames deve essere compiuto un **controllo negativo** (revertenti spontanei) ed un **controllo positivo** con mutageni standard (2-nitrofluorene, sodio azide e 2-aminofluorene) per controllare il funzionamento dei ceppi.

Per ogni campione esaminato è stato calcolato il valore di mutagenicità ad ogni singola dose eseguendo la media matematica delle 3 prove effettuate.

Nel caso della mutagenicità dell'aria, infatti, i risultati vengono espressi convenzionalmente sia come **potenza mutagena specifica**, e cioè il numero di eventi mutageni per unità di peso di estratto organico (μg), oppure come **attività mutagena unitaria**, e cioè il numero di eventi mutageni ottenuti per unità di volume di aria a cui si riferisce l'estratto saggiato (litri o metri cubi).

Questa modalità di espressione dei risultati consente un confronto qualitativo tra tutti i campioni esaminati dal momento che l'attività biologica può dipendere, non solo dalla qualità delle polveri intesa come l'effetto indotto dalle diverse sostanze adsorbite ma anche dalla concentrazione delle polveri presenti in un metro cubo di aria, tenendo conto che un essere umano inala circa 20 m³ di aria al giorno.

Le concentrazioni analizzate nel test di mutagenesi sono state le seguenti:

Cabina A

- □ 1.5 mg/piastra 52.2 m³/piastra
- □ 1 mg/piastra 34.8 m³/piastra
- □ 0.5 mg/piastra 17.4 m³/piastra
- □ 0.15 mg/piastra 5.22/piastra
- □ 0.1 mg/piastra 3.48 m³/piastra
- □ 0.05 mg/piastra 1.74 m³/piastra

Lotto 5

- □ 1.5 mg/piastra −45.67 m³/piastra
- □ 1 mg/piastra 20.47 m³/piastra
- □ 0.5 mg/piastra 10.23 m³/piastra
- □ 0.15 mg/piastra 4.57 m³/piastra
- □ 0.1 mg/piastra 2.05 m³/piastra
- □ 0.05 mg/piastra 1.02 m³/piastra

Sulla base di quanto riportato nel "Bacterial Reverse Mutation Test. OECD Guidelines for the Testing of Chemicals Section 4 Health Effects, Test No. 471 – 1997" per stabilire la positività (mutagenicità) dei campioni si applica il criterio del raddoppio, cioè un campione si considera positivo quando in due dosi consecutive, oppure la più alta dose che non ha evidenziato tossicità, il rapporto tra il numero dei revertenti indotti e il numero dei revertenti spontanei (controllo negativo) è \geq 2 e quando almeno due di queste dosi consecutive hanno mostrato una relazione dose-risposta lineare. (Chu KL et al 1981).

Per l'analisi quantitativa sono stati considerati sia i campioni positivi (rapporto trattato/controllo \geq 2) che quelli che presentano rette di regressione con $R^2 \geq 0.75$, da cui sono stati ricavati i valori dei revertenti/ m^3 di aria aspirata equivalenti (e quindi il valore dei revertenti/ μg di particolato), rappresentati dai coefficienti angolari delle rispettive rette di regressione lineare, considerando solo il tratto lineare della curva dose/risposta al fine di eliminare l'interferenza dovuta all'eventuale presenza di effetto tossico o di altri effetti inibenti.

7. ANALISI CHIMICHE

Sulla frazione PM₁₀ del particolato atmosferico sono state anche effettuate indagini chimiche qualitative prendendo in esame gli Idrocarburi Policiclici Aromatici e la componente metallica. Le analisi sono state eseguite da Eurolab srl ed in allegato vengono riportati i rapporti di prova.

8. RISULTATI delle analisi eseguite sul particolato atmosferico

8.1 Analisi gravimetrica del PM₁₀

Nelle tabelle 3 e 4 sono riassunti i risultati relativi alle concentrazioni di particolato PM₁₀ ottenuti nel corso della campagna di monitoraggio nelle due postazioni esaminate. In particolare, vengono riportati i risultati ottenuti per ogni singola giornata di prelievo al fine di poter effettuare confronti con i limiti normativi nonostante, come descritto nel paragrafo 5, i filtri siano stati successivamente unificati per l'esecuzione delle valutazioni chimiche e biologiche.

Tabella 3: concentrazione di PM₁₀ rilevate presso la cabina A

CABINA A - Data di prelievo	concentrazione PM ₁₀ μg/m³	Valore limite giornaliero D.lgs 155/2010
28/07/2021- 29/07/2021	26	
29/07/2021 – 30/07/2021	24	50 μg/m³
02/08/2021 - 03/08/2021	13	(da non superare più di 35 volte
03/08/2021 - 04/08/2021	21	per anno)
04/08/2021 - 05/08/2021	22	

Tabella 4: concentrazione di PM₁₀ rilevate presso il lotto 5

	CABINA B - Data di prelievo	concentrazione PM ₁₀ μg/m³	Valore limite giornaliero D.lgs 155/2010
	28/07/2021- 29/07/2021	28	
,	29/07/2021 - 30/07/2021	25	50 μg/m³
,	02/08/2021 - 03/08/2021	11	(da non superare più di 35 volte
	03/08/2021 - 04/08/2021	19	per anno)
	04/08/2021 - 05/08/2021	20	

Dall'analisi dei risultati ottenuti è necessario effettuare alcune considerazioni in riferimento:

- alla conformità delle concentrazioni di PM₁₀ con i valori limite previsti dalla normativa per questo parametro
- alla distribuzione del PM₁₀ nel sito oggetto di indagine

Se si effettua un confronto delle concentrazioni di PM_{10} rilevate con i limiti legislativi previsti dal D.lgs. n. 155/10 e s.m.i. a tutela della protezione della salute umana, ed in particolare con i limiti sulla concentrazione media annuale (pari a 40 $\mu g/m^3$) e sulla concentrazione media giornaliera (pari a 50 $\mu g/m^3$):

- le concentrazioni rilevate presso la cabina A durante il periodo di monitoraggio non hanno mai evidenziato superamenti del valore limite giornaliero. Il valore medio dei monitoraggi è pari a 21.2 μg/m³
- anche le concentrazioni rilevate presso il lotto 5 non hanno evidenziato superamenti del valore limite giornaliero con entrambe i sistemi. Il valore medio dei monitoraggi è pari a 20.6 μg/m³

I valori registrati sono stati paragonati con quanto rilevato nel corso dei precedenti monitoraggi invernali ed estivi per le postazioni di prelievo indagate al fine di comprendere meglio la distribuzione spaziale e temporale del parametro polveri nel sito (tabelle 5 e 6). Evidenziati in verde sono riportati i vari rilevati nel mese di aprile 2020 durante l'emergenza sanitaria da Covid.

Tabella 5: concentrazione di PM₁₀ rilevate presso la cabina A (in inverno e in estate)

INVERNO 2017	PM ₁₀ μg/m³	INVERNO 2018	PM ₁₀ μg/m³	INVERNO 2019	PM ₁₀ μg/m³	APRILE 2020	PM ₁₀ μg/m³	INVERNO 2021	PM ₁₀ μg/m³
16/01/2017 – 17/01/2017	38	22/01/2018 – 23/01/2018	51.4	21/01/2019 – 22/01/2019	54.4	14/04/2020 – 15/04/2020	24.09	01/02/2021 - 02/02/2021	32
17/01/2017 – 18/01/2017	45,5	23/01/2018 – 24/01/2018	62.2	22/01/2019 – 23/01/2019	62.6	15/04/2020 – 16/04/2020	28.73	02/02/2021- 03/02/2021	51
18/01/2017 – 19/01/2017	65,9	24/01/2018 – 25/01/2018	96.9	23/01/2019 – 24/01/2019	41.6	16/04/2020 – 17/04/2020	30.16	03/02/2021 - 04/02/2021	51
19/01/2017 – 20/01/2017	83,2	25/01/2018 – 26/01/2018	81.2	24/01/2019 – 25/01/2019	48.1	17/04/2020 – 18/04/2020	28.57	04/02/2021- 05/02/2021	51
20/01/2017 – 21/01/2017	73	29/01/2018 – 30/01/2018	49.4	28/01/2019 – 29/01/2019	75.1	18/04/2020– 19/04/2020	29.47	05/02/2021- 06/02/2021	25
VALORE MEDIO	61.12		68.2		56.4		28.20		42

ESTATE 2017	PM ₁₀ μg/m³	ESTATE 2018	PM ₁₀ μg/m³	ESTATE 2019	PM ₁₀ μg/m³	ESTATE 2020	PM ₁₀ μg/m³	ESTATE 2021	PM ₁₀ μg/m³
03/07/2017 – 04/07/2017	21,2	06/08/2018 - 07/08/2018	23.5	30/07/2019 – 31/07/2019	27.6	04/08/2020 – 05/08/2020	17.32	28/07/2021- 29/07/2021	26
04/07/2017 – 05/07/2017	34,1	07/08/2018 - 08/08/2018	18.4	31/07/2019 – 01/08/2019	34.8	05/08/2020 – 06/08/2020	43.55	29/07/2021 – 30/07/2021	24
05/07/2017 – 06/07/2017	51,4	08/08/2018 - 09/08/2018	18.8	01/08/2019 – 02/08/2019	30.1	06/08/2020 – 07/08/2020	28.37	02/08/2021 - 03/08/2021	13
06/07/2017 – 07/07/2017	43,0	09/08/2018 - 10/08/2018	16.3	05/08/2019 – 06/08/2019	39.4	07/08/2020 – 08/08/2020	25.20	03/08/2021 - 04/08/2021	21
07/07/2017 – 08/07/2017	48,9	10/08/2018 - 11/08/2018	20.2	06/08/2019 – 07/08/2019	30.9	10/08/2020 – 11/08/2020	31.96	04/08/2021 - 05/08/2021	22
VALORE MEDIO	39.72		19.4		32.6		29.28		21.2

Tabella 6: concentrazione di PM₁₀ rilevate presso il lotto 5 (in inverno e in estate)

	random di delitari di all'india				
INVERNO 2019	PM ₁₀ μg/m ³	APRILE 2020	PM ₁₀ μg/m³	INVERNO 2021	PM ₁₀ μg/m³
04/02/2019 -	76.9	14/04/2020 -	69.44	01/02/2021 -	32
05/02/2019	76.9	15/04/2020	69.44	02/02/2021	32
05/02/2019 -	27.9	15/04/2020 -	37.08	02/02/2021-	58
06/02/2019	27.9	16/04/2020	37.08	03/02/2021	58
06/02/2019 -	131.8	16/04/2020 -	36.86	03/02/2021 -	52
07/02/2019	151.0	17/04/2020	30.60	04/02/2021	32
07/02/2019 -	104.7	17/04/2020 -	37.47	04/02/2021-	43
08/02/2019	104.7	18/04/2020	37.47	05/02/2021	43
08/02/2019 -	81.2	18/04/2020-	31.41	05/02/2021-	37
09/02/2019	01.2	19/04/2020	51.41	06/02/2021	5/
VALORE MEDIO	84.5		42.45		41

ESTATE 2018	PM ₁₀ μg/m ³	ESTATE 2019	PM ₁₀ μg/m ³	ESTATE 2020	PM ₁₀ μg/m ³	ESTATE 2021	PM ₁₀ μg/m³
23/07/2018 – 24/07/2018	19.5	22/07/2019 – 23/07/2019	54.3	04/08/2020 – 05/08/2020	26.71	28/07/2021- 29/07/2021	28
24/07/2018 – 25/07/2018	25.8	23/07/2019 – 24/07/2019	59.8	05/08/2020 – 06/08/2020	29.13	29/07/2021 – 30/07/2021	25
25/07/2018 – 26/07/2018	30.5	24/07/2019 – 25/07/2019	54.5	06/08/2020 – 07/08/2020	33.62	02/08/2021 - 03/08/2021	11
30/07/2018 – 31/07/2018	3.6	25/07/2019 – 26/07/2019	42.5	07/08/2020 – 08/08/2020	35.47	03/08/2021 - 04/08/2021	19
		29/07/2019 – 30/07/2019	24.3	10/08/2020 – 11/08/2020	27.83	04/08/2021 - 05/08/2021	20
VALORE MEDIO	19.8		47.1		30.55		20.6

L'analisi dei risultati consente di osservare che:

- Come già riportato nelle relazioni precedenti, i valori registrati nel corso dei monitoraggi descrivono in modo evidente il tipico <u>andamento stagionale del parametro</u> <u>"polveri"</u> caratterizzato da valori più alti nei mesi invernali rispetto ai mesi estivi.
- I valori registrati presso la cabina A e presso il lotto 5 nella campagna estiva del 2021 sono in linea con quanto rilevato nel corso delle precedenti campagne estive e, più in generale, i valori medi di particolato atmosferico sia invernale che estivo sono sempre stati relativamente omogenei e costanti tra loro

Al fine di valutare <u>la distribuzione del particolato atmosferico nel territorio oggetto di indagine,</u> <u>d</u>i seguito si riportano i dati gravimetrici rilevati sul territorio in esame dal Sistema Regionale di Rilevamento della qualità dell'aria registrati negli stessi giorni di prelievo presso postazioni di misura dislocate sul territorio rappresentative di zone urbane e suburbane e quindi caratterizzate da diverse condizioni di traffico autoveicolare.

Per ciascuna centralina, oltre ai dati giornalieri, vengono riportati anche i valori registrati presso le due postazioni di monitoraggio in discarica.

Tabella 7: Torino – Via della Consolata

Data	Valore – PM ₁₀ μg/m ³	Valore medio	Valore limite giornaliero D.lgs
		μg/m³	155/2010
28/07/2021	22		
29/07/2021	23		
30/07/2021	20		
31/07/2021	19		
01/08/2021	12	17.3	50 μg/m³
02/08/2021	14	17.5	(da non superare più di 35 volte per anno)
03/08/2021	19		
04/08/2021	12		
05/08/2021	15		
06/08/2021	17		

Tabella 8 Torino – Lingotto

Data	Valore – PM ₁₀ μg/m ³	Valore medio μg/m³	Valore limite giornaliero D.lgs 155/2010
28/07/2021	17		
29/07/2021	19		
30/07/2021	18		
31/07/2021	15		
01/08/2021	9	13.9	50 μg/m³
02/08/2021	9	13.5	(da non superare più di 35 volte per anno)
03/08/2021	14		
04/08/2021	13		
05/08/2021	12		
06/08/2021	13		

Tabella 9: Torino – Via Rubino

Tabella 3. Tottillo – via Rubillo					
Data	Valore – PM ₁₀ μg/m ³	Valore medio μg/m³	Valore limite giornaliero D.lgs 155/2010		
28/07/2021	21				
29/07/2021	22				
30/07/2021	19				
31/07/2021	19				
01/08/2021	11	18.3	50 μg/m³		
02/08/2021	10	16.5	(da non superare più di 35 volte per anno)		
03/08/2021	18		a.m.e,		
04/08/2021	26				
05/08/2021	16				
06/08/2021	21				

Tabella 10 Torino – Via Grassi

Data	Valore – PM ₁₀ μg/m ³	Valore medio μg/m³	Valore limite giornaliero D.lgs 155/2010
28/07/2021	28		
29/07/2021	26		
30/07/2021	20		
31/07/2021	15		
01/08/2021	15	20.8	50 μg/m³
02/08/2021	24	20.8	(da non superare più di 35 volte per anno)
03/08/2021			ge,
04/08/2021	22		
05/08/2021	15		
06/08/2021	23		

Tabella 11 Beinasco – TRM

Data	Valore – PM ₁₀ μg/m ³	Valore medio μg/m³	Valore limite giornaliero D.lgs 155/2010
28/07/2021	/		
29/07/2021	19		
30/07/2021	17		
31/07/2021	15		
01/08/2021	8	13.8	50 μg/m³
02/08/2021	9	15.0	(da non superare più di 35 volte per anno)
03/08/2021	15		a.me,
04/08/2021	/		
05/08/2021	13		
06/08/2021	15		

Tabella 12 Collegno – corso Francia

Data	Valore – PM ₁₀ µg/m ³	Valore medio	Valore limite giornaliero
	20 (10)	μg/m³	D.lgs 155/2010
28/07/2021	23		
29/07/2021	23		
30/07/2021	23		
31/07/2021	18		
01/08/2021	11	19	50 μg/m ³
02/08/2021	13	19	(da non superare più di 35 volte per anno)
03/08/2021	21		umo,
04/08/2021	20		
05/08/2021	15		
06/08/2021	23		

Tabella 13: Druento - La Mandria

Data	Valore – PM ₁₀ μg/m ³	Valore medio μg/m³	Valore limite giornaliero D.lgs 155/2010
28/07/2021	29	M8/	Diigo 199/2010
29/07/2021	29		
30/07/2021	30		
31/07/2021	23]	
01/08/2021	19	26	50 μg/m³
02/08/2021	/	26	(da non superare più di 35 volte per anno)
03/08/2021	/		dimo
04/08/2021	/		
05/08/2021	/		
06/08/2021	/		

Tabella 14: Settimo – Via Vivaldi

Data	Valore – PM ₁₀ μg/m ³	Valore medio μg/m³	Valore limite giornaliero D.lgs 155/2010
28/07/2021			
29/07/2021	25		
30/07/2021	23		
31/07/2021	19		
01/08/2021	13	17.3	50 μg/m ³
02/08/2021	12	17.5	(da non superare più di 35 volte per anno)
03/08/2021	19		umo,
04/08/2021	15		
05/08/2021	14		
06/08/2021	16		

Dall'analisi di questi dati è possibile osservare, nello stesso periodo temporale, una coerenza dei risultati ottenuti presso la cabina A della discarica con entrambe le modalità di prelievo con le concentrazioni medie di PM_{10} registrate dalla rete regionale (range 13-26 $\mu g/m^3$ per la cabina A e 11-28 $\mu g/m^3$ per il lotto 5), a dimostrazione e conferma che la **distribuzione** di questo parametro nel territorio urbano/suburbano risulterebbe **omogenea**.

8.2 Analisi delle potenzialità genotossiche – particolato atmosferico PM₁₀

Le tabelle seguenti (tab. 15 - 16) riportano, come richiesto dal metodo riportato, i valori medi dei revertenti ottenuti nel test considerando le 3 repliche effettuate per ogni diluizione del campione. In rosso vengono evidenziati i risultati per i quali è stato ottenuto il raddoppio dei revertenti rispetto al controllo negativo (spontanee).

Tabella 15: Centralina A

TA 98 - S9	Medie revertenti ±deviazione standard	TA 100 - S9	Medie revertenti ±deviazione standard
Spontanee	22 ± 1	Spontanee	$\textbf{120} \pm \textbf{17}$
2NF	860 ± 40	SA	1200 ± 33
1.5 mg/piastra	26 ± 8	1.5 mg/piastra	110 ± 7
1 mg/piastra	28 ± 6	1 mg/piastra	120 ± 5
0.5 mg/piastra	25 ± 4	0.5 mg/piastra	118 ± 2
0.15 mg/piastra	22 ± 3	0.15 mg/piastra	127 ± 14
0.1 mg/piastra	22 ± 4	0.1 mg/piastra	129 ± 6
0.05 mg/piastra	18 ± 2	0.05 mg/piastra	130 ± 6
TA 98 + S9	Medie revertenti ±deviazione standard	TA 100 + S9	Medie revertenti ±deviazione standard
Spontanee	26 ± 6	Spontanee	135 ± 24
2AF	1480 ± 85	2AF	1620 ± 77
1.5 mg/piastra	28 ± 2	1.5 mg/piastra	128 ± 14
1 mg/piastra	27 ± 3	1 mg/piastra	130 ± 6
0.5 mg/piastra	27 ± 6	0.5 mg/piastra	134 ± 2
0.15 mg/piastra	26 ± 4	0.15 mg/piastra	134 ± 8
0.1 mg/piastra	25 ± 5	0.1 mg/piastra	138± 7
0.05 mg/piastra	28 ± 6	0.05 mg/piastra	121 ± 11

Tabella 16: Lotto 5

TA 98 - S9	Medie revertenti ±deviazione standard	TA 100 - S9	Medie revertenti ±deviazione standard
Spontanee	22 ± 1	Spontanee	$\textbf{120} \pm \textbf{17}$
2NF	860 ± 40	SA	1200 ± 33
1.5 mg/piastra	28 ± 3	1.5 mg/piastra	99± 4
1 mg/piastra	24± 9	1 mg/piastra	110 ± 3
0.5 mg/piastra	24 ± 9	0.5 mg/piastra	$\textbf{120} \pm \textbf{11}$
0.15 mg/piastra	24 ± 2	0.15 mg/piastra	115± 10
0.1 mg/piastra	23 ± 5	0.1 mg/piastra	123 ± 10
0.05 mg/piastra	22 ± 1	0.05 mg/piastra	125± 13
TA 98 + S9	Medie revertenti ±deviazione standard	TA 100 + S9	Medie revertenti ±deviazione standard
Spontanee	26 ± 6	Spontanee	135 ± 24
2AF	1480 ± 85	2AF	1620 ± 77
1.5 mg/piastra	27 ± 3	1.5 mg/piastra	130 ± 10
1 mg/piastra	25 ± 5	1 mg/piastra	128 ± 5
0.5 mg/piastra	26 ± 2	0.5 mg/piastra	125± 7
0.15 mg/piastra	26 ± 3	0.15 mg/piastra	$\textbf{132}\pm\textbf{2}$
0.1 mg/piastra	25 ± 3	0.1 mg/piastra	141 ± 2
0.05 mg/piastra	27 ± 2	0.05 mg/piastra	145 ± 3

Dall'analisi dei risultati, per quanto riguarda la formulazione di un giudizio sui campioni in oggetto, in tutti e due i campioni non sono mai state evidenziate risposte positive (rapporto trattato/controllo \geq 2 e relazione dose-risposta) sia con il ceppo TA98 sia con il ceppo TA100 in assenza ed in presenza di attivazione metabolica.

I dati ottenuti nel corso di questo monitoraggio non consentono, a differenza di quanto rilevato durante i campionamenti invernali, di eseguire alcuna rielaborazione dell'attività mutagena espressa come valori dei revertenti/m³ di aria aspirata equivalenti e revertenti/mg di particolato.

8.3 Analisi chimiche – Ricerca di Idrocarburi Policiclici Aromatici

A supporto delle valutazioni biologiche, sono state eseguite analisi chimiche di approfondimento che hanno riguardato la valutazione della categoria degli Idrocarburi Policiclici Aromatici legati alla frazione del Particolato atmosferico.

La decisione di ricercare questi composti organici è legata al fatto che essi rappresentano degli utili indicatori in quanto derivanti da processi di combustione incompleta di materiale organico contenente carbonio, come carbone, legno, prodotti petroliferi e rifiuti. La loro presenza in atmosfera è dovuta soprattutto alle molteplici sorgenti di emissione antropiche, come la combustione di biomasse, carbone, oli, gas, il traffico autoveicolare, marittimo ed aereo, l'incenerimento dei rifiuti, numerosi processi industriali, la produzione e stesura di asfalti, ecc. Gli IPA ad alto peso molecolare, come il benzo[e]pirene e il benzo[a]pirene, sono presenti in elevate quantità in catrami, bitumi, pece, carboni e prodotti correlati come gli asfalti. Inoltre, possono derivare da nerofumo e fuliggine di legna o comunque si ricollegano a fonti pirogeniche. Sorgenti naturali sono i vulcani e gli incendi boschivi.

In atmosfera gli IPA sono presenti sia in fase gassosa che condensati sul particolato atmosferico; tuttavia, i composti più pesanti, costituiti da 4 o più anelli, si trovano principalmente adsorbiti su particelle, specialmente sulle frazioni più fini, che hanno tempi di residenza più lunghi nell'atmosfera. Questo aspetto diventa significativo se si considera che gli IPA a più alto peso molecolare rappresentano anche quelli caratterizzati da un rilevante attività tossica, mutagena e cancerogena.

La valutazione dell'inquinamento da IPA in aria ambiente è disciplinata dal D. Lgs 155/2010 che prevede il valore obiettivo di 1 ng/m³ (media annua) per il solo benzo(a)pirene, cancerogeno certo, ritenuto indicatore dell'andamento di tutta la classe.

In riferimento a ciò, è necessario ricordare che si devono considerare anche altri IPA importanti per il loro profilo tossicologico. Nel 2010 la IARC (International Agency for Research on Cancer) ha pubblicato i risultati della revisione effettuata nell'ambito della categoria degli Idrocarburi Policiclici Aromatici (Vol. 92, suppl. 7 "Summaries and evaluations of evidence for carcinogenicity in humans and in experimental animals, and summaries of other relevant data, for agents for which there are data on carcinogenicity in humans") a seguito della quale ha classificato 16 IPA come cancerogeni dimostrati, probabili o possibili per l'essere umano:

Il benzo(a)pirene è un cancerogeno per l'uomo (gruppo 1);

- Il dibenzo[a,h]antracene, ciclopenta(c,d)pirene ed il dibenzo[a,l]pirene sono probabili cancerogeni per l'uomo (gruppo 2A);
- Il benzo(a)antracene, benzo(b, j, k)fluorantene, il crisene, l'Indeno (1,2,3,c,d) pirene, dibenzo[a,h]pirene dibenzo[a,i]pirene, il naftalene, il metilcrisene, il benzo(j)aceantrilene, il benzo(c)fenantrene sono possibili cancerogeni per l'uomo (gruppo 2B).

Altri IPA quali Fenantrene, Antracene, Fluorantene, Pirene, fluorene, acenaftene, Benzo(ghi)perilene forniscono comunque utili indicazioni al fine di valutare l'apporto del contenuto totale di IPA in termini di attività biologica delle polveri: queste sostanze, infatti, pur non essendo state classificate come probabili o possibili cancerogeni dallo IARC hanno dimostrato di indurre mutagenicità in prove di laboratorio con il *Salmonella*/microsome assay con il ceppo di Salmonella TA98.

Gli idrocarburi policiclici aromatici (IPA) sono prodotti nei processi di combustione incompleta di materiali organici vengono e sono emessi in atmosfera quasi totalmente adsorbiti sul materiale particolato. Molti composti sono cancerogeni anche se l'evidenza di cancerogenicità sull'uomo relativa a singoli IPA, dato che in condizioni reali si verifica sempre una coesposizione simultanea a miscele complesse di molte decine di IPA, è estremamente difficile.

Sulla base di quanto sopra descritto, nella tabella 17 sono riportati i valori delle concentrazioni degli Idrocarburi Policiclici Aromatici riscontrati sulla frazione PM₁₀ del particolato atmosferico in entrambe le postazioni. Per ciascuna postazione di prelievo sono indicate le concentrazioni rilevate per ogni composto nella settimana di prelievo in modo da poter uniformare il dato con quanto eseguito per le analisi biologiche (in cui è stato testato un campione derivante dall'unificazione dei 5 filtri campionati).

In modo particolare, sono indicati per ogni composto i valori espressi in ng/m³ di aria, nonché la sommatoria delle concentrazioni di tutti gli Idrocarburi ritrovati suddividendoli anche in IPA cancerogeni e non cancerogeni.

Tabella 17 – Concentrazioni di IPA (Idrocarburi Policiclici Aromatici) ritrovate sulle polveri PM₁₀ campionate (ng/m³ di aria).

		Centralina A	Lotto 5	
Naftalene	ng/m³	0.018	0.013	
Acenaftilene	ng/m3	0.0079	0.0039	
Acenaftene	ng/m³	0.0054	0.0039	
Fluorene	ng/m³	0.0069	0.0054	
Fenantrene	ng/m³	0.044	0.027	
Antracene	ng/m³	0.0044	0.0030	
Fluorantene	ng/m³	0.037	0.18	
Pirene	ng/m³	0.0089	0.0074	
Benzo (a) antracene	ng/m³	0.013	0.0079	
Crisene	ng/m³	0.040	0.026	
Benzo(b) - fluorantene	ng/m³	0.019	0.016	
Benzo(K) - fluorantene	ng/m³	0.0069	0.0059	
Benzo(j) - fluorantene	ng/m³	0.0089	0.0074	
Benzo (e)pirene	ng/m³	0.010	0.0099	
Benzo (a)pirene	ng/m³	0.019	0.015	
Perilene	ng/m³	0.0020	0.0015	
Indeno (1,2,3,c,d) pirene	ng/m³	0.012	0.014	
Dibenzo(a,h)antracene	ng/m³	0.034	0.0044	
Benzo(g,h,i)perilene	ng/m³	0.017	0.021	
Dibenzo(a,l)pirene	ng/m³	< 0.001	< 0.001	
Dibenzo(a,e)pirene	ng/m³	< 0.001	< 0.001	
Dibenzo(a,i)pirene	ng/m³	< 0.001	< 0.001	
Dibenzo(a,h)pirene	ng/m³	< 0.001	< 0.001	
IPA TOTALI	ng/m³	0.3143	0.3726	

Dall'analisi complessiva dei risultati è possibile osservare che le concentrazioni degli IPA rilevate nella centralina A e presso il lotto 5 sono, in termini di media, paragonabili tra di loro senza evidenziare differenze tra le due stazioni di monitoraggio.

Inoltre, si tratta di valori molto simili a quanto normalmente evidenziato durante i monitoraggi eseguiti nei mesi estivi. Ciò è dovuto in parte alle condizioni meteoclimatiche registrate nella settimana dei prelievi (condizioni meteo climatiche stabili e soleggiate) ma soprattutto al ridotto contributo rappresentato dal traffico autoveicolare sugli inquinanti atmosferici.

A conferma di quanto scritto, nella tabella 18 vengono riportate le concentrazioni di IPA Totali rilevate nelle varie postazioni di campionamento durante i monitoraggi eseguiti nel periodo 2017-2021:

IPA TOTALI ng/m ³	Centralina A	Centralina B	Lotto 5
Inverno 2017	23.51	18.87	
Estate 2017	0.713	0.38	
Inverno 2018	19.57	16.83	
Estate 2018	0.49		0.33
Inverno 2019	18.17		22.15
Estate 2019	0.55		0.40
Aprile 2020 (emergenza Covid)	1.39		1.37
Estate 2020	1.41		1.37
Inverno 2021	7.75		4.96
Estate 2021	0.31		0.37

Tabella 18

Come già effettuato nel corso dei precedenti monitoraggi, si è tentato di comprendere quale potessero essere le sorgenti emissive degli Idrocarburi Policiclici Aromatici ritrovati, utilizzando la stessa modalità di rielaborazione applicata per le campagne già eseguite.

In particolare, si è fatto riferimento a studi di letteratura¹ che hanno messo in evidenza che, attraverso il calcolo dei rapporti tra alcuni IPA, è possibile fare alcune ipotesi circa le possibili fonti emissive. In particolare, il profilo degli IPA derivanti da sorgenti petrogeniche (ovvero presenti nei combustibili fossili e non originati da processi di combustione) è caratterizzato dalla prevalente presenza di composti leggeri a 2 o 3 anelli aromatici mentre il profilo degli IPA derivanti da sorgenti pirogeniche (originati per combustione) è caratterizzato dalla prevalenza di composti con 4-5 anelli aromatici.

I valori caratteristici dei rapporti di IPA che consentono di distinguere la sorgente emissiva tra petrogenica, pirolitica (combustione di combustibili), combustione di legno, biomassa o carbone sono riportati nella tabella 19:

Tabella 19: rapporti caratteristici di IPA per specifiche sorgenti di emissione

Diagnostic ratio	Origine petrogenica	Combustione combustibili fossili	Combustione carbone, legno, biomasse
ANT/(ANT+PHE)	< 0.1	>0.1	-
FLA/(FLA+PYR)	< 0.4	0.4 - 0.5	>0.5
BaA/(BaA+CHR)	< 0.2	>0.35	0.2 – 0.35
IcdP/(IcdP + BghiP)	< 0.2	0.2 – 0.5	>0.5

ANT = antracene; BaA = benzo(a)antracene; BghiP = benzo(ghi)pirene; CHR = crisene; FLA = fluorantene; IcdP = indeno(cd)perilene; PHE = fenantrene; PYR = pyrene

¹ 2014 5th International Conference of Environmental Science and Technology – IPCBEE Vol. 69 (2014) – M. Tobiszewski "Application of diagnostic ratios of PAHs to characterize the pollution emission sources

Pur nella consapevolezza che i dati finora ottenuti sono numericamente poco rappresentativi e che si riferiscono ad un periodo di campionamento di 5 giorni (e non ai singoli dati giornalieri ottenuti nel periodo di monitoraggio), si è voluto tentare di applicare i rapporti descritti nella tabella 19 ai diversi campioni fino a questo momento oggetto di indagine.

Nelle tabelle 20 e 21 sono riassunti i risultati ottenuti mettendo a confronto le diverse campagne di monitoraggio:

Tabella 20: rapporti caratteristici di IPA per la centralina A

	Centralina A									
Diagnostic ratio	Inverno 2017	Estate 2017	Inverno 2018	Estate 2018	Inverno 2019	Estate 2019	Aprile 2020 - emergenza Covid	Estate 2020	Inverno 2021	Estate 2021
ANT/(ANT+PHE)	0.64	0.057	0.13	0.08	0.18	0.59	0.072	0.07	0.18	0.09
FLA/(FLA+PYR)	0.38	0.39	0.40	0.12	0.40	0.35	0.164	0.16	0.45	0.81
BaA/(BaA+CHR)	0.46	0.24	0.41	0.52	0.39	0.27	0.359	0.35	0.38	0.26
IcdP/(IcdP + BghiP)	0.48	0.37	0.47	0.07	0.53	0.32	0.478	0.47	0.96	0.41

Tabella 21: rapporti caratteristici di IPA per il lotto 5

	Lotto 5									
Diagnostic ratio	Estate 2018	Inverno 2019	Estate 2019	Aprile 2020 –	Estate 2020	Inverno 2021	Estate 2021			
				emergenza						
				Covid						
ANT/(ANT+PHE)	0.09	0.16	0.12	0.067	0.065	0.18	0.1			
FLA/(FLA+PYR)	0.16	0.46	0.34	0.146	0.145	0.39	0.96			
BaA/(BaA+CHR)	0.51	0.38	0.26	0363	0.36	0.38	0.23			
IcdP/(IcdP + BghiP)	0.38	0.54	0.31	0.492	0.5	0.56	0.24			

L'analisi di questi rapporti evidenzia innanzitutto l'andamento stagionale già riscontrato con gli altri parametri descritti nella relazione ovvero con la valutazione ponderale del particolato atmosferico e con la risposta biologica registrata.

Analizzando la serie di dati, risulta interessante osservare che il rapporto il cui valore risulta più stabile nel tempo è il BaA/BaA+CHR con valori tipici dei processi di combustione (origine pirogenica).

8.4 Analisi chimiche - Ricerca di metalli

Nel corso della campagna di monitoraggio è stata, inoltre, presa in esame la componente metallica presente nei campioni di PM₁₀, con particolare attenzione agli analiti per i quali vengono previste deroghe nella composizione dell'eluato dei rifiuti ammessi allo smaltimento. Nelle tabelle 22 e 23 sono riportati i valori delle concentrazioni dei metalli riscontrati sulla

Nelle tabelle 22 e 23 sono riportati i valori delle concentrazioni dei metalli riscontrati sulla frazione PM₁₀ del particolato atmosferico in entrambe le postazioni.

Per ciascuna postazione di prelievo sono indicate le concentrazioni espresse in ng/m³ di aria rilevate per ogni composto nelle diverse giornate di prelievo.

biologia applicata all'ambiente

Tabella 22 – Cabina A - Concentrazioni di metalli ritrovate sulle polveri PM₁₀ campionate (ng/m³ di aria).

Tubellu EE	Cubina A	28/07/2021 – 29/07/2021	29/07/2021 - 30/07/2021	02/08/2021 - 03/08/2021	03/08/2021 - 04/08/2021	04/08/2021 - 05/08/2021
Alluminio	ng/m³	1040	688	524	316	469
Antimonio	ng/m3	1.30	0.73	0.37	0.3	2.1
		0.023	0.014	< 0.0063	< 0.0063	
Argento	ng/m³					0.015
Arsenico	ng/m³	0.48	0.28	0.15	0.11	0.34
Bario	ng/m³	2950	1920	1430	965	1650
Berillio	ng/m³	0.0190	0.011	< 0.0063	< 0.0063	< 0.0063
Boro	ng/m³	1800	1200	870	560	960
Cadmio	ng/m³	0.097	0.15	0.094	0.058	0.11
Cobalto	ng/m³	0.2	0.13	< 0.063	< 0.063	0.160
Cromo	ng/m³	5.70	3.20	2.30	1.80	4.50
Ferro	ng/m³	899	458	255	208	613
Manganese	ng/m³	13	608	3.80	3	9.80
Mercurio	ng/m³	0.048	0.038	< 0.031	< 0.031	0.041
Molibdeno	ng/m³	1.40	0.74	0.37	0.31	0.880
Nichel	ng/m³	2.40	1.39	0.72	0.62	1.90
Piombo	ng/m³	4.60	2.50	1.80	1.50	3
Rame	ng/m³	48	25	15	32	37
Selenio	ng/m³	0.44	0.280	0.092	0.104	0.230
Stagno	ng/m³	7.60	4.20	2.5	2.20	6
Tallio	ng/m³	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063
Tellurio	ng/m³	< 0.063	< 0.063	< 0.063	< 0.063	< 0.063
Titanio	ng/m³	4.80	2.80	1.40	1	3.3
Vanadio	ng/m³	0.840	0.56	0.14	0.18	0.49
Zinco	ng/m³	2200	1403	1036	718	1234

biologia applicata all'ambiente

Tabella 23 – Lotto 5 - Concentrazioni di metalli ritrovate sulle polveri PM₁₀ campionate (ng/m³ di aria).

		28/07/2021 – 29/07/2021	29/07/2021 - 30/07/2021	02/08/2021 - 03/08/2021	03/08/2021 - 04/08/2021	04/08/2021 - 05/08/2021
Alluminio	ng/m³	549	833	418	353	552
Antimonio	ng/m3	0.78	0.61	0.32	0.6	1.1
Argento	ng/m³	0.0310	0.026	< 0.0063	0.022	0.025
Arsenico	ng/m³	0.350	0.48	0.14	0.19	0.370
Bario	ng/m³	1490	2730	1190	1200	1710
Berillio	ng/m³	< 0.0063	0.015	< 0.0063	< 0.0063	0.01
Boro	ng/m³	910	1600	710	680	1000
Cadmio	ng/m³	2.70	2	0.42	1.50	1.90
Cobalto	ng/m³	0.16	0.2	< 0.063	0.067	0.17
Cromo	ng/m³	4.80	5.10	1.80	2.50	4.40
Ferro	ng/m³	326	448	137	151	411
Manganese	ng/m³	8.90	11	3	4	9.60
Mercurio	ng/m³	< 0.031	< 0.031	< 0.031	< 0.031	< 0.031
Molibdeno	ng/m³	0.63	0.81	0.22	0.32	0.6
Nichel	ng/m³	2.85	2.87	0.640	1.30	2.50
Piombo	ng/m³	20	18	1.90	7.31	23
Rame	ng/m³	29	18	22	21	60
Selenio	ng/m³	0.27	0.45	0.098	0.17	0.25
Stagno	ng/m³	4.20	4.20	1.40	1.20	5
Tallio	ng/m³	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063
Tellurio	ng/m³	< 0.063	< 0.063	< 0.063	< 0.063	< 0.063
Titanio	ng/m³	3.40	4.50	1	1.40	3.60
Vanadio	ng/m³	0.47	0.77	0.1	0.22	0.46
Zinco	ng/m³	1098	2051	854	859	1284

Da una prima osservazione dei dati, a differenza di quanto rilevato nel monitoraggio invernale, risulta meno evidente l'influenza della dislocazione della postazione di prelievo dal momento che i metalli rilevati e la relativa concentrazione sembrano distribuiti in modo omogeneo su tutta l'area senza registrare differenze significative nelle varie giornate di prelievo.

Per ecobioqual srl

Valeria Meineri

biologia applicata all'ambiente

BIBLIOGRAFIA

D.lgs n. 155 del 13.08.10 – "Attuazione della Direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa";

Chu KL et al (1981) – "Evaluating statistical analysis and reproducibility of mutagenicity assay" Mutat Res 1981; 85: 119-132

IARC, International Agency for Research on cancer, Monographs, Supplement 2012. Available from http://monographs.iarc.fr/ENG/classification/index.php;

OECD. 1997. Bacterial Reverse Mutation Test. OECD Guidelines for the Testing of Chemicals Section 4 Health Effects, Test No. 471.Paris, France: Organization for Economic Cooperation and Development. pp 1–11.

Ramos de Rainho et al (2013) – "Genotoxicity of Polycyclic Aromatic Hydrocarbons and nitroderived in respirable airborne particulate matter collected from urban areas of Rio de Janeiro (Brazil)" -Biomed Research International volume 2013, article ID 765352;

 M. Tobiszewsk (2014) - "Application of diagnostic ratios of PAHs to characterize the pollution emission sources" - 2014 5th International Conference of Environmental Science and Technology – IPCBEE Vol. 69

Umbuzeiro G.A. et al (2008)- "Mutagenicity and DNA adduct formation of PAH, nitro-PAH, and oxy-PAH fractions of atmospheric particulate matter from Sao Paolo, Brazil" - Mutation Research 652 (2008) 72-80;

UNI EN 12341: 2014 – "Aria Ambiente – metodo gravimetrico di riferimento per la determinazione della concentrazione in massa di particolato sospeso PM₁₀ o PM _{2.5}"

ALLEGATO

RAPPORTI DI PROVA - DETERMINAZIONE DEGLI IDROCARBURI POLICICLICI AROMATICI E DEI METALLI SULLA FRAZIONE PM₁₀

Rapporto di Prova N. 178213/21

Nichelino 15/09/2021

Numero campione: 178213 Data accettazione: 30/08/21 Data inizio prove: 10/09/21 Data termine prove: 11/09/21

Descrizione Campione: Filtro da campionamento ambientale **Identificazione Campione:** Cabina meteo A (Filtro 1+3+5+7+10)

Note Cliente: Date di campionamento: dal 28/07/2021 al 05/08/2021 - volume totale aspirato: 2031 m3

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 30/08/21

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 30/08/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Idrocarburi policiclici aromatici EPA 3545 A 2007 + EPA 8270 E 2018	Los Los	
10/09/2021- 11/09/2021	Naftalene	0,018 ng/m3	
10/09/2021- 11/09/2021	Acenaftilene	0,0079 ng/m3	
10/09/2021- 11/09/2021	Acenaftene	0,0054 ng/m3	
10/09/2021- 11/09/2021	Fluorene	0,0069 ng/m3	
10/09/2021- 11/09/2021	Fenantrene	0,044 ng/m3	
10/09/2021- 11/09/2021	Antracene	0,0044 ng/m3	
10/09/2021- 11/09/2021	Fluorantene	0,037 ng/m3	
10/09/2021- 11/09/2021	Pirene	0,0089 ng/m3	
10/09/2021- 11/09/2021	Benzo(a)antracene	0,013 ng/m3	
10/09/2021- 11/09/2021	Crisene	0,040 ng/m3	
10/09/2021- 11/09/2021	Benzo(b)fluorantene	0,019 ng/m3	
10/09/2021- 11/09/2021	Benzo(k)fluorantene	0,0069 ng/m3	

Segue Rapporto di Prova N. 178213/21

Nichelino 15/09/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
10/09/2021- 11/09/2021	Benzo(j)fluorantene	0,0089 ng/m3	
10/09/2021- 11/09/2021	Benzo(a)pirene	0,019 ng/m3	
10/09/2021- 11/09/2021	Benzo(e)pirene	0,010 ng/m3	
10/09/2021- 11/09/2021	Perilene	0,0020 ng/m3	
10/09/2021- 11/09/2021	Indeno(1,2,3-cd)pirene	0,012 ng/m3	
10/09/2021- 11/09/2021	Dibenzo(a,h)antracene	0,034 ng/m3	
10/09/2021- 11/09/2021	Benzo(g,h,i)perilene	0,017 ng/m3	
10/09/2021- 11/09/2021	Dibenzo(a,e)pirene	< 0,0010 ng/m3	
10/09/2021- 11/09/2021	Dibenzo(a,l)pirene	< 0,0010 ng/m3	
10/09/2021- 11/09/2021	Dibenzo(a,i)pirene	< 0,0010 ng/m3	
10/09/2021- 11/09/2021	Dibenzo(a,h)pirene	< 0,0010 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 178214/21

Nichelino 15/09/2021

Numero campione: 178214 Data accettazione: 30/08/21 Data inizio prove: 10/09/21 Data termine prove: 11/09/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Lotto 5 (Filtro 2+4+6+8)

Note Cliente: Date di campionamento: dal 28/07/2021 al 05/08/2021 - volume totale aspirato: 2029 m3

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 30/08/21

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 30/08/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Idrocarburi policiclici aromatici		
	EPA 3545 A 2007 + EPA 8270 E 2018		
10/09/2021- 11/09/2021	Naftalene	0,013 ng/m3	
10/09/2021- 11/09/2021	Acenaftilene	0,0039 ng/m3	
10/09/2021- 11/09/2021	Acenaftene	0,0039 ng/m3	
10/09/2021- 11/09/2021	Fluorene	0,0054 ng/m3	
10/09/2021- 11/09/2021	Fenantrene	0,027 ng/m3	
10/09/2021- 11/09/2021	Antracene	0,0030 ng/m3	
10/09/2021- 11/09/2021	Fluorantene	0,18 ng/m3	
10/09/2021- 11/09/2021	Pirene	0,0074 ng/m3	
10/09/2021- 11/09/2021	Benzo(a)antracene	0,0079 ng/m3	
10/09/2021- 11/09/2021	Crisene	0,026 ng/m3	
10/09/2021- 11/09/2021	Benzo(b)fluorantene	0,016 ng/m3	
10/09/2021- 11/09/2021	Benzo(k)fluorantene	0,0059 ng/m3	

Pagina 1 di 2

Segue Rapporto di Prova N. 178214/21

Nichelino 15/09/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
10/09/2021- 11/09/2021	Benzo(j)fluorantene	0,0074 ng/m3	
10/09/2021- 11/09/2021	Benzo(a)pirene	0,015 ng/m3	
10/09/2021- 11/09/2021	Benzo(e)pirene	0,0099 ng/m3	
10/09/2021- 11/09/2021	Perilene	0,0015 ng/m3	
10/09/2021- 11/09/2021	Indeno(1,2,3-cd)pirene	0,014 ng/m3	
10/09/2021- 11/09/2021	Dibenzo(a,h)antracene	0,0044 ng/m3	
10/09/2021- 11/09/2021	Benzo(g,h,i)perilene	0,021 ng/m3	
10/09/2021- 11/09/2021	Dibenzo(a,e)pirene	< 0,0010 ng/m3	
10/09/2021- 11/09/2021	Dibenzo(a,l)pirene	< 0,0010 ng/m3	
10/09/2021- 11/09/2021	Dibenzo(a,i)pirene	< 0,0010 ng/m3	
10/09/2021- 11/09/2021	Dibenzo(a,h)pirene	< 0,0010 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 178203/21

Nichelino 06/10/2021

Numero campione: 178203

Data accettazione: 30/08/21

Data inizio prove: 01/10/21 Data termine prove: 01/10/21

Descrizione Campione:

Filtro da campionamento ambientale

Identificazione Campione:

Filtro 1 Cabina meteo A

Note Cliente: Procedura Campionamento: Date di campionamento: dal 28/07/2021 al 29/07/2021 - volume totale aspirato: 406 m3 - peso 10.6 mg

Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento:

30/08/21

Campionamento:

al campione così come ricevuto Effettuato da Ecobioqual S.r.l.

Data ricevimento campione: 30/08/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10 UNI EN 14902:2005		
01/10/2021- 01/10/2021	Alluminio	1040 ng/m3	
01/10/2021- 01/10/2021	Antimonio	1,30 ng/m3	
01/10/2021- 01/10/2021	Argento	0,0230 ng/m3	
01/10/2021- 01/10/2021	Arsenico	0,480 ng/m3	
01/10/2021- 01/10/2021	Bario	2950 ng/m3	
01/10/2021- 01/10/2021	Berillio	0,0190 ng/m3	
01/10/2021- 01/10/2021	Boro	1800 ng/m3	
01/10/2021- 01/10/2021	Cadmio	0,0970 ng/m3	
01/10/2021- 01/10/2021	Cobalto	0,200 ng/m3	
01/10/2021- 01/10/2021	Cromo	5,70 ng/m3	
01/10/2021- 01/10/2021	Fеrro	899 ng/m3	
01/10/2021- 01/10/2021	Manganese	13,0 ng/m3	
01/10/2021			

Pagina 1 di 2

Segue Rapporto di Prova N. 178203/21

Nichelino 06/10/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
01/10/2021- 01/10/2021	Mercurio	0,0480 ng/m3	
01/10/2021- 01/10/2021	Molibdeno	1,40 ng/m3	
01/10/2021- 01/10/2021	Nichel	2,40 ng/m3	
01/10/2021- 01/10/2021	Piombo	4,60 ng/m3	
01/10/2021- 01/10/2021	Rame	48,0 ng/m3	
01/10/2021- 01/10/2021	Selenio	0,440 ng/m3	
01/10/2021- 01/10/2021	Stagno	7,60 ng/m3	
01/10/2021- 01/10/2021	Tallio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Tellurio	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Titanio	4,80 ng/m3	
01/10/2021- 01/10/2021	Vanadio	0,840 ng/m3	
01/10/2021- 01/10/2021	Zinco	2200 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

DE PIEMON ANO CONTROL SIGNATURE OF SIGNATURE OF PAGE O Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 178204/21

Nichelino 06/10/2021

Numero campione: 178204 Data accettazione: 30/08/21 Data inizio prove: 01/10/21 Data termine prove: 01/10/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 2 Lotto 5

Note Cliente: Date di campionamento: dal 28/07/2021 al 29/07/2021 - volume totale aspirato: 396 m3 - peso 11.1 mg

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 30/08/21

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 30/08/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
	UNI EN 14902:2005		
01/10/2021- 01/10/2021	Alluminio	549 ng/m3	
01/10/2021- 01/10/2021	Antimonio	0,780 ng/m3	
01/10/2021- 01/10/2021	Argento	0,0310 ng/m3	
01/10/2021- 01/10/2021	Arsenico	0,350 ng/m3	
01/10/2021- 01/10/2021	Bario	1490 ng/m3	
01/10/2021- 01/10/2021	Berillio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Boro	910 ng/m3	
01/10/2021- 01/10/2021	Cadmio	2,70 ng/m3	
01/10/2021- 01/10/2021	Cobalto	0,160 ng/m3	
01/10/2021- 01/10/2021	Cromo	4,80 ng/m3	
01/10/2021- 01/10/2021	Ferro	326 ng/m3	
01/10/2021- 01/10/2021	Manganese	8,90 ng/m3	

Pagina 1 di 2

Segue Rapporto di Prova N. 178204/21

Nichelino 06/10/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
01/10/2021- 01/10/2021	Mercurio	< 0,0310 ng/m3	
01/10/2021- 01/10/2021	Molibdeno	0,630 ng/m3	
01/10/2021- 01/10/2021	Nichel	2,85 ng/m3	
01/10/2021- 01/10/2021	Piombo	20,0 ng/m3	
01/10/2021- 01/10/2021	Rame	29,0 ng/m3	
01/10/2021- 01/10/2021	Selenio	0,270 ng/m3	
01/10/2021- 01/10/2021	Stagno	4,20 ng/m3	
01/10/2021- 01/10/2021	Tallio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Tellurio	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Titanio	3,40 ng/m3	
01/10/2021- 01/10/2021	Vanadio	0,470 ng/m3	
01/10/2021- 01/10/2021	Zinco	1098 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

CHIMICO AND CHIMIC

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 178205/21

Nichelino 06/10/2021

Numero campione: 178205 Data accettazione: 30/08/21 Data inizio prove: 01/10/21 Data termine prove: 01/10/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 3 Cabina meteo A

Note Cliente: Date di campionamento: dal 29/07/2021 al 30/07/2021 - volume totale aspirato: 405 m3 - peso 9.9 mg

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 30/08/21

Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 30/08/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
	UNI EN 14902:2005		
01/10/2021- 01/10/2021	Alluminio	688 ng/m3	
01/10/2021- 01/10/2021	Antimonio	0,730 ng/m3	
01/10/2021- 01/10/2021	Argento	0,0140 ng/m3	
01/10/2021- 01/10/2021	Arsenico	0,280 ng/m3	
01/10/2021- 01/10/2021	Bario	1920 ng/m3	
01/10/2021- 01/10/2021	Berillio	0,0110 ng/m3	
01/10/2021- 01/10/2021	Boro	1200 ng/m3	
01/10/2021- 01/10/2021	Cadmio	0,150 ng/m3	
01/10/2021- 01/10/2021	Cobalto	0,130 ng/m3	
01/10/2021- 01/10/2021	Cromo	3,20 ng/m3	
01/10/2021- 01/10/2021	Ferro	458 ng/m3	
01/10/2021- 01/10/2021	Manganese	6,80 ng/m3	

Segue Rapporto di Prova N. 178205/21

Nichelino 06/10/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
01/10/2021- 01/10/2021	Mercurio	0,0380 ng/m3	
01/10/2021- 01/10/2021	Molibdeno	0,740 ng/m3	
01/10/2021- 01/10/2021	Nichel	1,39 ng/m3	
01/10/2021- 01/10/2021	Piombo	2,50 ng/m3	
01/10/2021- 01/10/2021	Rame	25,0 ng/m3	
01/10/2021- 01/10/2021	Selenio	0,280 ng/m3	
01/10/2021- 01/10/2021	Stagno	4,20 ng/m3	
01/10/2021- 01/10/2021	Tallio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Tellurio	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Titanio	2,80 ng/m3	
01/10/2021- 01/10/2021	Vanadio	0,560 ng/m3	
01/10/2021- 01/10/2021	Zinco	1403 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

DE PIEMO ANO SIGILLO DE PIEMO SIGILLO DE Il Responsabile di Laboratorio (o suo sostituto)

Data termine prove: 01/10/21

Spett.le
BARRICALLA S.P.A.
VIA BRASILE 1
10093 COLLEGNO (TO)

Data inizio prove: 01/10/21

Rapporto di Prova N. 178206/21

Nichelino 06/10/2021

Numero campione: 178206 Data accettazione: 30/08/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 4 Lotto 5

Note Cliente: Date di campionamento: dal 29/07/2021 al 30/07/2021 - volume totale aspirato: 403 m3 - peso 10.2 mg

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 30/08/21

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 30/08/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10	***	
	UNI EN 14902:2005		
01/10/2021-	Alluminio	833 ng/m3	
01/10/2021			
01/10/2021-	Antimonio	0,610 ng/m3	
01/10/2021			
01/10/2021-	Argento	0,0260 ng/m3	
01/10/2021			
01/10/2021-	Arsenico	0,480 ng/m3	
01/10/2021			
01/10/2021-	Bario	2730 ng/m3	
01/10/2021			
01/10/2021-	Berillio	0,0150 ng/m3	
01/10/2021			
01/10/2021-	Boro	1600 ng/m3	
01/10/2021			
01/10/2021-	Cadmio	2,00 ng/m3	
01/10/2021			
01/10/2021-	Cobalto	0,200 ng/m3	
01/10/2021			
01/10/2021-	Cromo	5,10 ng/m3	
01/10/2021			
01/10/2021-	Ferro	448 ng/m3	
01/10/2021			
01/10/2021-	Manganese	11,0 ng/m3	
01/10/2021			

Segue Rapporto di Prova N. 178206/21

Nichelino 06/10/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
01/10/2021- 01/10/2021	Mercurio	< 0,0310 ng/m3	
01/10/2021- 01/10/2021	Molibdeno	0,810 ng/m3	
01/10/2021- 01/10/2021	Nichel	2,87 ng/m3	
01/10/2021- 01/10/2021	Piombo	18,0 ng/m3	
01/10/2021- 01/10/2021	Rame	18,0 ng/m3	
01/10/2021- 01/10/2021	Selenio	0,450 ng/m3	
01/10/2021- 01/10/2021	Stagno	4,20 ng/m3	
01/10/2021- 01/10/2021	Tallio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Tellurio	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Titanio	4,50 ng/m3	
01/10/2021- 01/10/2021	Vanadio	0,770 ng/m3	
01/10/2021- 01/10/2021	Zinco	2051 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 178207/21

Nichelino 06/10/2021

Numero campione: 178207 Data accettazione: 30/08/21 Data inizio prove: 01/10/21 Data termine prove: 01/10/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 5 Cabina meteo A

Note Cliente: Date di campionamento: dal 02/08/2021 al 03/08/2021 - volume totale aspirato: 403 m3 - peso 5.4 mg

Procedura Campionamento: Data di campionamento: 30/08/21

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 30/08/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
	UNI EN 14902:2005		
01/10/2021- 01/10/2021	Alluminio	524 ng/m3	
01/10/2021- 01/10/2021	Antimonio	0,370 ng/m3	
01/10/2021- 01/10/2021	Argento	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Arsenico	0,150 ng/m3	
01/10/2021- 01/10/2021	Bario	1430 ng/m3	15.5
01/10/2021- 01/10/2021	Berillio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Boro	870 ng/m3	
01/10/2021- 01/10/2021	Cadmio	0,0940 ng/m3	
01/10/2021- 01/10/2021	Cobalto	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Cromo	2,30 ng/m3	
01/10/2021- 01/10/2021	Ferro	255 ng/m3	
01/10/2021- 01/10/2021	Manganese	3,80 ng/m3	

Segue Rapporto di Prova N. 178207/21

Nichelino 06/10/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
01/10/2021- 01/10/2021	Mercurio	< 0,0310 ng/m3	
01/10/2021- 01/10/2021	Molibdeno	0,370 ng/m3	
01/10/2021- 01/10/2021	Nichel	0,720 ng/m3	
01/10/2021- 01/10/2021	Piombo	1,80 ng/m3	
01/10/2021- 01/10/2021	Rame	15,0 ng/m3	
01/10/2021- 01/10/2021	Selenio	0,0920 ng/m3	
01/10/2021- 01/10/2021	Stagno	2,50 ng/m3	
01/10/2021- 01/10/2021	Tallio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Tellurio	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Titanio	1,40 ng/m3	
01/10/2021- 01/10/2021	Vanadio	0,140 ng/m3	
01/10/2021- 01/10/2021	Zinco	1036 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 178208/21

Nichelino 06/10/2021

Numero campione: 178208 Data accettazione: 30/08/21 Data inizio prove: 01/10/21 Data termine prove: 01/10/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 6 Lotto 5

Note Cliente: Date di campionamento: dal 02/08/2021 al 03/08/2021 - volume totale aspirato: 435 m3 - peso 4.6 mg

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 30/08/21

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 30/08/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

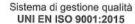
Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
	UNI EN 14902:2005		
01/10/2021-	Alluminio	418 ng/m3	
01/10/2021			
01/10/2021-	Antimonio	0,320 ng/m3	
01/10/2021			
01/10/2021-	Argento	< 0,00630 ng/m3	
01/10/2021			
01/10/2021-	Arsenico	0,140 ng/m3	
01/10/2021			
01/10/2021-	Bario	1190 ng/m3	
01/10/2021			
01/10/2021-	Berillio	< 0,00630 ng/m3	
01/10/2021			
01/10/2021-	Boro	710 ng/m3	
01/10/2021			
01/10/2021-	Cadmio	0,420 ng/m3	
01/10/2021			
01/10/2021-	Cobalto	< 0,0630 ng/m3	
01/10/2021	van Novemberd (1974)	100 A - 100	
01/10/2021-	Cromo	1,80 ng/m3	
01/10/2021			
01/10/2021-	Ferro	137 ng/m3	
01/10/2021		1900.49 - 50 - 1 00.4259	
01/10/2021-	Manganese	3,00 ng/m3	
01/10/2021			

Segue Rapporto di Prova N. 178208/21

Nichelino 06/10/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.


Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
01/10/2021- 01/10/2021	Mercurio	< 0,0310 ng/m3	
01/10/2021- 01/10/2021	Molibdeno	0,220 ng/m3	
01/10/2021- 01/10/2021	Nichel	0,640 ng/m3	
01/10/2021- 01/10/2021	Piombo	1,90 ng/m3	
01/10/2021- 01/10/2021	Rame	22,0 ng/m3	
01/10/2021- 01/10/2021	Selenio	0,0980 ng/m3	
01/10/2021- 01/10/2021	Stagno	1,40 ng/m3	
01/10/2021- 01/10/2021	Tallio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Tellurio	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Titanio	1,00 ng/m3	
01/10/2021- 01/10/2021	Vanadio	0,100 ng/m3	
01/10/2021- 01/10/2021	Zinco	854,0 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 178209/21

Nichelino 06/10/2021

Numero campione: 178209 Data accettazione: 30/08/21 Data inizio prove: 01/10/21 Data termine prove: 01/10/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 7 Cabina meteo A

Note Cliente: Date di campionamento: dal 03/08/2021 al 04/08/2021 - volume totale aspirato: 402 m3 - peso 8.6 mg

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 30/08/21

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 30/08/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
01/10/2021- 01/10/2021	UNI EN 14902:2005 Alluminio	316 ng/m3	
01/10/2021- 01/10/2021	Antimonio	0,300 ng/m3	
01/10/2021- 01/10/2021	Argento	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Arsenico	0,110 ng/m3	
01/10/2021- 01/10/2021	Bario	965 ng/m3	
01/10/2021- 01/10/2021	Berillio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Boro	560 ng/m3	
01/10/2021- 01/10/2021	Cadmio	0,0580 ng/m3	
01/10/2021- 01/10/2021	Cobalto	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Cromo	1,80 ng/m3	
01/10/2021- 01/10/2021	Ferro	208 ng/m3	
01/10/2021- 01/10/2021	Manganese	3,00 ng/m3	

Pagina 1 di 2

Segue Rapporto di Prova N. 178209/21

Nichelino 06/10/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
01/10/2021- 01/10/2021	Mercurio	< 0,0310 ng/m3	
01/10/2021- 01/10/2021	Molibdeno	0,310 ng/m3	
01/10/2021- 01/10/2021	Nichel	0,620 ng/m3	
01/10/2021- 01/10/2021	Piombo	1,50 ng/m3	
01/10/2021- 01/10/2021	Rame	32,0 ng/m3	
01/10/2021- 01/10/2021	Selenio	0,104 ng/m3	
01/10/2021- 01/10/2021	Stagno	2,20 ng/m3	
01/10/2021- 01/10/2021	Tallio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Tellurio	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Titanio	1,00 ng/m3	
01/10/2021- 01/10/2021	Vanadio	0,180 ng/m3	
01/10/2021- 01/10/2021	Zinco	718,0 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

SECULATION STATES

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 178210/21

Nichelino 06/10/2021

Numero campione: 178210 Data accettazione: 30/08/21 Data inizio prove: 01/10/21 Data termine prove: 01/10/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 8 Lotto 5

Note Cliente: Date di campionamento: dal 03/08/2021 al 04/08/2021 - volume totale aspirato: 382 m3 - peso 7.2 m3

Procedura Campionamento: Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 30/08/21

al campione così come ricevuto

Campionamento: Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 30/08/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
	UNI EN 14902:2005		
01/10/2021- 01/10/2021	Alluminio	353 ng/m3	
01/10/2021- 01/10/2021	Antimonio	0,600 ng/m3	
01/10/2021- 01/10/2021	Argento	0,0220 ng/m3	·
01/10/2021- 01/10/2021	Arsenico	0,190 ng/m3	
01/10/2021- 01/10/2021	Bario	1200 ng/m3	
01/10/2021- 01/10/2021	Berillio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Boro	680 ng/m3	
01/10/2021- 01/10/2021	Cadmio	1,50 ng/m3	
01/10/2021- 01/10/2021	Cobalto	0,0670 ng/m3	
01/10/2021- 01/10/2021	Cromo	2,50 ng/m3	
01/10/2021- 01/10/2021	Ferro	151 ng/m3	
	Manganese	4,00 ng/m3	
01/10/2021 01/10/2021 01/10/2021	Manganese	4,00 ng/r	m3

Pagina 1 di 2

Segue Rapporto di Prova N. 178210/21

Nichelino 06/10/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
01/10/2021- 01/10/2021	Mercurio	< 0,0310 ng/m3	
01/10/2021- 01/10/2021	Molibdeno	0,320 ng/m3	
01/10/2021- 01/10/2021	Nichel	1,30 ng/m3	
01/10/2021- 01/10/2021	Piombo	7,31 ng/m3	
01/10/2021- 01/10/2021	Rame	21,0 ng/m3	
01/10/2021- 01/10/2021	Selenio	0,170 ng/m3	
01/10/2021- 01/10/2021	Stagno	1,20 ng/m3	
01/10/2021- 01/10/2021	Tallio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Tellurio	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Titanio	1,40 ng/m3	
01/10/2021- 01/10/2021	Vanadio	0,220 ng/m3	
01/10/2021- 01/10/2021	Zinco	859,0 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 178211/21

Nichelino 06/10/2021

Numero campione: 178211 Data accettazione: 30/08/21 Data inizio prove: 01/10/21 Data termine prove: 01/10/21

Descrizione Campione: Filtro da campionamento ambientale

Identificazione Campione: Filtro 9 Cabina meteo A

Note Cliente: Date di campionamento: dal 04/08/2021 al 05/08/2021 - volume totale aspirato: 415 m3 - peso 9.1 mg Procedura Campionamento:

al campione così come ricevuto

Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento: 30/08/21

Effettuato da Ecobioqual S.r.l. Campionamento:

Data ricevimento campione: 30/08/21

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
	UNI EN 14902:2005		
01/10/2021- 01/10/2021	Alluminio	469 ng/m3	
01/10/2021- 01/10/2021	Antimonio	2,10 ng/m3	
01/10/2021- 01/10/2021	Argento	0,0150 ng/m3	
01/10/2021- 01/10/2021	Arsenico	0,340 ng/m3	
01/10/2021- 01/10/2021	Bario	1650 ng/m3	
01/10/2021- 01/10/2021	Berillio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Boro	960 ng/m3	
01/10/2021- 01/10/2021	Cadmio	0,110 ng/m3	
01/10/2021- 01/10/2021	Cobalto	0,160 ng/m3	
01/10/2021- 01/10/2021	Cromo	4,50 ng/m3	20)
01/10/2021- 01/10/2021	Ferro	613 ng/m3	
01/10/2021- 01/10/2021	Manganese	9,80 ng/m3	

Pagina 1 di 2

Segue Rapporto di Prova N. 178211/21

Nichelino 06/10/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
01/10/2021- 01/10/2021	Mercurio	0,0410 ng/m3	
01/10/2021- 01/10/2021	Molibdeno	0,880 ng/m3	
01/10/2021- 01/10/2021	Nichel	1,90 ng/m3	
01/10/2021- 01/10/2021	Piombo	3,00 ng/m3	
01/10/2021- 01/10/2021	Rame	37,0 ng/m3	
01/10/2021- 01/10/2021	Selenio	0,230 ng/m3	
01/10/2021- 01/10/2021	Stagno	6,00 ng/m3	
01/10/2021- 01/10/2021	Tallio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Tellurio	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Titanio	3,30 ng/m3	
01/10/2021- 01/10/2021	Vanadio	0,490 ng/m3	
01/10/2021- 01/10/2021	Zinco	1234 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

SIGILLONG STORY

Il Responsabile di Laboratorio (o suo sostituto)

Rapporto di Prova N. 178212/21

Nichelino 06/10/2021

Numero campione: 178212 Data accettazione: 30/08/21 Data inizio prove: 01/10/21 Data termine prove: 01/10/21

Filtro da campionamento ambientale Descrizione Campione:

Filtro 10 Lotto 5 Identificazione Campione:

Date di campionamento: dal 04/08/2021 al 05/08/2021 - volume totale aspirato: 413 m3 - peso 8.2 mg Note Cliente: Procedura Campionamento: 30/08/21

Campione consegnato da Ecobioqual S.r.l. I risultati si riferiscono Data di campionamento:

al campione così come ricevuto

Effettuato da Ecobioqual S.r.l. Data ricevimento campione: 30/08/21 Campionamento:

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
	Metalli sulla frazione PM10		
01/10/2021- 01/10/2021	UNI EN 14902:2005 Alluminio	552 ng/m3	
01/10/2021- 01/10/2021	Antimonio	1,10 ng/m3	
01/10/2021- 01/10/2021	Argento	0,0250 ng/m3	
01/10/2021- 01/10/2021	Arsenico	0,370 ng/m3	
01/10/2021- 01/10/2021	Bario	1710 ng/m3	
01/10/2021- 01/10/2021	Berillio	0,0100 ng/m3	
01/10/2021- 01/10/2021	Boro	1000 ng/m3	
01/10/2021- 01/10/2021	Cadmio	1,90 ng/m3	
01/10/2021- 01/10/2021	Cobalto	0,170 ng/m3	
01/10/2021- 01/10/2021	Cromo	4,40 ng/m3	
01/10/2021- 01/10/2021	Ferro	411 ng/m3	
01/10/2021- 01/10/2021	Manganese	9,60 ng/m3	

Segue Rapporto di Prova N. 178212/21

Nichelino 06/10/2021

Committente: BARRICALLA S.P.A.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo Laboratorio.

Data Inizio - Fine	Nome Prova e Metodo Analitico	Valore	Annotazione
01/10/2021- 01/10/2021	Mercurio	< 0,0310 ng/m3	
01/10/2021- 01/10/2021	Molibdeno	0,600 ng/m3	
01/10/2021- 01/10/2021	Nichel	2,50 ng/m3	
01/10/2021- 01/10/2021	Piombo	23,0 ng/m3	
01/10/2021- 01/10/2021	Rame	60,0 ng/m3	
01/10/2021- 01/10/2021	Selenio	0,250 ng/m3	7
01/10/2021- 01/10/2021	Stagno	5,00 ng/m3	.,
01/10/2021- 01/10/2021	Tallio	< 0,00630 ng/m3	
01/10/2021- 01/10/2021	Tellurio	< 0,0630 ng/m3	
01/10/2021- 01/10/2021	Titanio	3,60 ng/m3	
01/10/2021- 01/10/2021	Vanadio	0,460 ng/m3	
01/10/2021- 01/10/2021	Zinco	1284 ng/m3	

Il Responsabile Tecnico (o suo sostituto)

dott. Claudio Melano

SIGILATOR DE CHIMICO D

Il Responsabile di Laboratorio (o suo sostituto)

Allegato 2

Ia - Persona di Riferimento

La persona di riferimenta è una persona tecnicamente competente, a conoscenza delle informazioni comunicate con la dichiarazione PRTR che può essere eventualmente contattata dalle autorità nel carso della fase di valutazione della qualità del dati. La persona di riferimento può anche non essere la stessa che ha materialmente compilato la dichiarazione e non deve necessariamente appartenere al complesso produttivo.

I.B. Per selezionare il "Comune" è necessario aver prima selezionato la "Provincia".

W.B. Fel Selezionare il Comune e necessario avei primi	a selezionato la Provincia .	_
Nome	Pasquale	•
Cognome	Luciani	•
Posizione professionale nell'impresa	Direttore Tecnico	1
Via/Piazza/Località	Via Brasile	1
numero civico (o "SNC" se non disponibile)	1	1
CAP	10093	1
Provincia (selezionare)	Torino	1
Comune (selezionare)	Collegno	1
		П

#VALORE!

	l'asterisco * contrassegna le informazioni che il dichiarante hal'obbligo di fornire			
Sestore del Complesso				
ome	Alessandro	*		
ognome	Battaglino	*		
me della società capogruppo/ragione sociale	BARRICALLA S.P.A.	*		
ome del complesso	BARRICALLA S.P.A.	*		
dirizzo del complesso:	VII BRIGHT			
dirizzo (es.: via della pace, Piazza Verdi) mero civico (indicare "SNC" se il civico non è disponibile	VIA BRASILE			
P	10093	*		
ovincia (selezionare)	Torino	*	#\	/ALORE!
omune (selezionare)	Collegno	*		THEORE.
(***************************************			
ordinate geografiche del complesso (in gradi sessagesimali)	gradi	р	orimi se	econdi
titudine		45,00	6,00	25,33 *
ngitudine (con riferimento a Greenwich)		7,00	35,00	38,83
tum (il sistema di riferimento da usare è WGS84)	W	/GS84		
dirizzo del sito web (link alle pagine "ambientali"):	WWW.BARRICALLA.COM			
tività a conomica principale (andiss \$14.05	20.22			
tività economica principale (codice NACE, selezionare)	38.22			
dice fiscale del complesso produttivo	04704500018	*		
imero di impianti	1	*		
imero di addetti	8	*		
imero di ore di esercizio nell'anno di riferimento		1700 *		
utorità Competente (selezionare)	Città Metropolitana	*		
nno di riferimento		2021		
ome o codice del corpo idrico recettore delle acque superficiali				
orne o codice dei corpo idrico recettore delle acque superficiali				
ome o codice dei corpo idrico recettore delle acque superficiali				
onie o codice dei corpo idrico recercore delle acque superficiali				
onie o coulce dei corpo iurico recessore delle acque superinciali				
onie o coulce dei corpo iurico recessore delle acque superinciali				
unie o cource der corpo ionico recettore dene acque superincian				
ote e comunicazioni: Informazioni di carattere generale				

II.b - Attività PRTR
Selezionare prima il "codice PRTR" e poi, nell'ordine, selezionare i successivi codici identificativi.

N. Attività PRTR	codice PRTR (selezionare)	codice IPPC (selezionare)	Sottoclassificazione PRTR eventuale (selezionare)	codice NOSE-P code (selezionare)	Volume di produzione	unità di misura (selezionare)	
1 (Principale)	5.d	5.4		109.06	152575,080	tonnellate/anno	*
2							
3							
5							4
6							-
7							-
8							1
9							1
10							1
11]
12							1
13							4
14 15							4
16		+					4
17							1
18							1
19							1
20					İ		1

VII.a - Trasferimento fuori sito di riffuti

N.B. non è richiesta l'indicazione delle quantità di riffuti per codice CER, è necessario aggregare i dati per destinazione e trattamento finale: inserire la quantità totale di riffuti (colonna "D") e poi i parziali (colonna "G")destinati al recupero o allo sundi inserio compilare tutti i campi relativi ai dati del recuperatore/smaltitore finale (colonne da "K" a "I")

ipologia rifiuto	Valore	soglia	Quantità totale trasferita (t/a)	Destinazione (Italia/Estero)		à per trattamento (t/a)	M/C/S	codifica		Ragione Sociale Recuperatore/ Smaltitore	Indirizzo completo del recuperatore/smaltitore	n. civico recuperator e/smaltitore	CAP recuperator e/smaltitor e	Città Recuperatore/s maltitore	Nazione Recuperatore/smaltit ore (selezionare)	Indirizzo completo del sito dove avviene il recupero/smaltimento finale	n. civico del sito dove avviene il recupero/sm altimento finale	dove avviene il	Città del sito dove avviene il recupero/smal timento finale	Nazione del s dove avviene recupero/smalt to finale (selezionare
				Italia Italia	D (t/a) R (t/a)		M	PESO	BILANCIA CERTIFICA	ATA ATA							-	 		
				Italia	R (t/a)	0,250	M	PESO PESO	BILANCIA CERTIFICA BILANCIA CERTIFICA	ATA										
Pericolosi	2	t/a	2,790																	
								L						<u> </u>						
				Italia	D (t/a)	8426,310	М													
				Italia	R (t/a)	3,651	М	PESO	BILANCIA CERTIFICI BILANCIA CERTIFICI											
lon pericolosi	2000	t/a	8429,961																	
ton pericolosi	2000	t/a	8429,961																	
ion pericolosi	2000	t/a	8429,961																	
ion pericolosi	2000	t/a	8429,961																	
lon pericolosi	2000	t/a	8429,961																	
ion pericolosi	2000	t/a	8429,961																	
ton pericolosi	2000	t/a	8429,961																	
ion pericolosi	2000	t/a	8429,961																	
ton pericolosi	2000	t/a	8429,961																	
ion pericolosi	2000	t/a	8429,961																	
ton pericolosi	2000	t/a	8429,961																	
ion pericolosi	2000	t/a	8429,961																	
ton pericolosi	2000	t/a	8429,961																	
ton pericolosi	2000	t/a	8429,961																	
on pericolosi	2000	t/a	8429,961																	

|--|

VIII.a - Certificazione del responsabile della dichiarazione

Il sottoscrit	Alessandro Battaglino in qualità di titolare/gestore del complesso sopra indicato,
	Dichiara
Che in base	e alle proprie conoscenze, le informazioni riportate nella dichiarazione sono vere e che i valori dichiarati, prodotti in base ai migliori dati disponibili, sono accurati.
	Dichiara inoltre
Che i miglio	ori dati disponibili sono contenuti nella documentazione riportata nel seguente elenco.
_	DOCUMENTAZIONE
	FORMULARI DI IDENTIFICAZIONE RIFIUTI
	REGISTRI DI CARICO E SCARICO
	MUD 2022 (DATI ANNO 2021)